Publicado en 1º ESO, Vídeos

Documentales de la Tierra

Documental HOME

Estamos viviendo un periodo crucial. Los científicos nos dicen que solo tenemos 10 años para cambiar nuestros modos de vida, evitar de agotar los recursos naturales y impedir una evolución catastrófica del clima de la Tierra.
Cada uno de nosotros debe participar en el esfuerzo colectivo, y es para sensibilizar al mayor número de personas que realizé la película HOME.
Para que esta película sea difundida lo más ampliamente posible, tenía que ser gratuita. Un mecenas, el grupo PPR, permitió que lo sea. Europacorp que lo distribuye, se comprometió en no tener ningún beneficio porque HOME no tiene ningún interés comercial.
Me gustaría que esta película se convierta en vuestra pelicula. Compártelo. Y actúa.
Yann Arthus-Bertrand

PLANETA TIERRA DOCUMENTALES

PLANETA TIERRA II

Carl Sagan viajes atraves del espacio y el tiempo

Océanos de Disney Nature

Fuerzas de la naturaleza

Publicado en Artículos científicos, Ciencia, Genética, Recursos

Muere el Nobel Sydney Brenner, el científico que revolucionó la biología con un gusano

El investigador sudafricano se considera uno de los más influyentes del siglo XX por sus trabajos en la regulación genética del desarrollo celular

Sydney Brenner nació en Sudáfrica en 1927 y ha muerto hoy, 92 años después, en Singapur. Durante la segunda mitad del siglo XX, fue protagonista de los hallazgos que revolucionaron la forma de entender el funcionamiento de los seres vivos; cómo convierten la información contenida en su ADN en los tejidos de sus órganos o en sus comportamientos.

En 2002, mucho más tarde de lo que quizá hubiesen merecido sus méritos, recibió el Premio Nobel de Fisiología o Medicina. El motivo fue su aportación al conocimiento sobre cómo regulan los genes el desarrollo y la muerte de las células. Para conocer esos mecanismos eligió al gusano Caenorhabditis elegans, un diminuto organismo con solo 959 células, lo bastante simple para responder a preguntas científicas básicas. Ahora, cientos de científicos los utilizan en todo el mundo para responder todo tipo de preguntas sobre biología, y compañías como la valenciana Biopolis prueban en ellos sustancias que pueden ayudar a retrasar el envejecimiento o reducir la grasa corporal.

Brenner recibió el Nobel por su trabajo con el gusano, pero como recuerda el biólogo y expresidente del CSIC Carlos Martínez Alonso, “podría haberlo recibido por muchos otros motivos”. En 1952, llegó al laboratorio de Cambridge donde Francis Crick y James Watson estaban a punto de resolver la estructura del ADN y desde entonces no abandonó la vanguardia de la investigación biológica. Entre 1953 y 1966 participó en la edad dorada de la biología molecular, cuando se desvelaron los principales secretos del código genético y la producción de las proteínas.

Algunos de los descubrimientos que podrían haber valido un Nobel según Martínez son los que se refieren al código genético. Junto a su mentor Crick, Brenner probó que ese código requiere tres unidades de ADN para montar cada uno de los aminoácidos, los ladrillos con los que se fabrican las proteínas. En 1960, junto a Matthew Meselson y François Jacob, demostró la existencia del ARN mensajero, el intermediario encargado de llevar la información contenida en los genes hasta las factorías que producen proteínas en las células. Este hito también habría merecido el máximo galardón científico.

Muere el Nobel Sydney Brenner, el científico que revolucionó la biología con un gusano

A mediados de los 60, tras una década que lo cambió todo, Crick y Brenner decidieron que ya habían resuelto los problemas fundamentales de la herencia y la biología molecular. El científico sudafricano decidió dedicar su genio a tratar de resolver un problema aún más complejo: cómo los genes diseñan animales. Para asaltar el enigma, Brenner propuso utilizar como modelo un organismo que se pudiese cultivar en un laboratorio. El elegido fue el C. elegans, hasta entonces nunca empleado en investigación.

Además del desarrollo de un organismo a partir de sus genes, al científico le interesaba el funcionamiento del cerebro. El gusano tenía un sistema nervioso lo bastante simple como para tratar de identificar la relación entre su comportamiento y las conexiones entre sus neuronas. Pero incluso con un cerebro tan sencillo como el de C. elegans, esta última tarea resultó imposible, aunque el trabajo con este organismo produjo resultados fascinantes. Junto a dos de sus estudiantes, John Sulton y Robert Horvitz, con los que después compartiría el Nobel, fue capaz de definir los pasos por los que a partir de una sóla célula de un huevo se podía construir un adulto con 959 células. El gusano también fue el primer organismo pluricelular en ser secuenciado, un paso que sirvió en el camino para la secuenciación del genoma humano.

Brenner ha trabajado prácticamente hasta el final de sus días y la muerte le ha encontrado en Singapur, un país que ayudó a convertir en una potencia en investigación biomédica desde que empezó a asesorar a su Gobierno a principios de los 80. Hasta el final también siguió apoyando a los más jóvenes, porque son los únicos capaces de resolver los problemas nuevos. “Mi problema es que se demasiado para enfrentarme a algunos problemas. Soy un firme creyente en que la ignorancia es importante para la ciencia. Si sabes demasiado, empiezas a ver por qué las cosas no funcionarán. Por eso es importante cambiar de campo de trabajo, para acumular ignorancia”, decía al New York Times en el 2000.

Se ha ido Brenner, uno de los gigantes de la biología del siglo XX, y se le llorará, casi siempre con sinceridad. Los que lo hagan con lágrimas de cocodrilo serán perdonados por el científico sudafricano. Él, que lo hizo todo en biología, tuvo entre sus primeros empleos, según le contó un día Brenner a Martínez, el de plañidero.

Leer en El País

Más información

Publicado en Ciencia, Recursos, Vídeos

Ciudad ciencia

http://www.ciudadciencia.es/

Un lugar de encuentro entre Ciencia y Sociedad

CIUDAD CIENCIA es un proyecto que acerca la ciencia a diversas localidades españolas mediante interesantes actividades de divulgación (conferencias, exposiciones, talleres, etc.). Regístrate y podrás participar en los talleres, subir tus fotos y entrar en contacto con investigadores a través de nuestro blog. [+]

Red de Ciudad Ciencia

 

En los medios

28/01/2019 – Lanza

Comer sano, hacer deporte y descansar bien, claves para mantener el sistema inmune

25/01/2019 – Ayuntamiento de La Solana

Comer sano, hacer deporte y descansar, claves para mantener el sistema inmune

25/01/2019 – Ayuntamiento de La Solana

‘Ciudad Ciencia’ regresa este jueves con una atractiva charla sobre nuestro sistema inmune

21/01/2019 – Noticias de La Villa

Alumnos del Sierra Luna participan en el taller ‘El aceite de oliva, el oro líquido de nuestro tiempo’

Ver listado completo

Ir al canal de YouTube

Vídeos de Ciudad Ciencia

  • Presentación de Ciudad Ciencia

  • Las plantas de tu ciudad

  • Utilización de residuos orgánicos en suelos agrícolas

  • Agricultura sostenible en el aula

  • V Gymkhana de los mares y los océanos (abril 2016, Madrid)

  • ‘Seres modélicos’. Entrevista al investigador Raimon Sabaté sobre bacteria Escherichia coli

  • Cómo observar una planta

FECYT Ministerio de Ciencia, Innovación y Universidades
Publicado en 1º Bachiller, 2º Bachiller, Ciencias de la Tierra y Medioambiente, Geología, Recursos, Vídeos

Geología en el campo

Canal de youtube sobre geología

Blanca Mingo y Javier García Guinea

GLACIARES. Relieve Glaciar

9:54
TOBAS CALCÁREAS. Edificios Tobáceos

9:58
FALLAS GEOLOGICAS. Tipos de Fallas

9:54
PLIEGUES GEOLOGICOS. Tipos de Pliegues

8:31
ROCAS. Tipos de Rocas

7:29
DESIERTOS

5:24
ESTRATOS

6:11
DIACLASAS

5:02
Pliegues geológicos de tipo Chevron

4:10
El Grafito de la Sierra de Guadarrama

4:39
Yesos de la Cuenca del Tajo

4:38
Publicado en 1º Bachiller, Anatomía Aplicada, El sistema inmunitario y las vacunas, Recursos

Así se propaga la resistencia a los antibióticos en el medioambiente

Los antibióticos están dejando de ser efectivos

Actualmente nos encontramos al borde de una crisis global porque los antibióticos están dejando de ser efectivos, poniendo así en riesgo una gran parte del desarrollo alcanzado por la medicina moderna.

De hecho, más del 70% de las bacterias patógenas que causan infecciones hospitalarias son resistentes a múltiples antibióticos, lo que hace que el tratamiento de tales infecciones sea altamente problemático. Además, se estima que en 2050, 10 millones de vidas humanas estarán en riesgo anualmente debido al aumento de la resistencia a los antibióticos si las soluciones no se encuentran a tiempo.

Los antibióticos son sustancias químicas que causan la muerte de las bacterias o, en su defecto, inhiben su crecimiento. Estas sustancias son producidas de forma natural por bacterias y hongos, principalmente por los que viven en el suelo.

En la naturaleza, los antibióticos cumplen diversos papeles ecológicos. Los microorganismos que los producen los utilizan como armas químicas para competir entre ellos y como moléculas de señalización para comunicarse químicamente y promover la coordinación entre diferentes individuos.

Desde mediados del siglo XX, estos compuestos se emplean, además, en medicina y veterinaria como herramienta terapéutica para el tratamiento de infecciones bacterianas. Junto con las vacunas, son uno de los desarrollos médicos que más ha contribuido a nuestra supervivencia y calidad de vida.

Por desgracia, en las últimas décadas su eficacia ha disminuido como consecuencia de su mala utilización y abuso. Ambas prácticas han provocado una creciente emergencia y diseminación de genes de resistencia a antibióticos o ARG (del inglés, antibiotic resistance genes) y, de forma concomitante, la aparición de bacterias resistentes a dichos antibióticos (las ARB).

Es importante enfatizar que, cuando suministramos un antibiótico para uso médico o veterinario, este solo se metaboliza parcialmente y, en consecuencia, gran parte del antibiótico administrado se excreta a través de la orina y las heces.

Así, los antibióticos y los productos de su degradación acaban en las plantas de depuración de aguas residuales urbanas, para posteriormente ser vertidos al medio ambiente a través del efluente de estas instalaciones. La aplicación de lodos de depuradora y enmiendas orgánicas de origen animal (como el estiércol y los purines) a suelos agrícolas también contribuye a la presencia de antibióticos, ARG y ARB en el entorno.

Una característica transmisible

Los genes de resistencia a antibióticos han permitido la convivencia ancestral entre antibióticos y bacterias, posibilitando que estas puedan sobrevivir en su presencia. Estos fragmentos de ADN se pueden transferir entre bacterias por dos vías bien diferenciadas:

  • Por una parte, mediante la transferencia de material genético desde bacterias parentales a bacterias hijas, en un proceso que se denomina transferencia vertical de genes.
  • Por otra parte, la transferencia horizontal de genes se produce cuando dos bacterias no emparentadas se transfieren material genético. Una de las mayores ventajas evolutivas de la transferencia horizontal es la adquisición rápida y eficaz, por parte de las bacterias receptoras, de genes que les permiten sobrevivir en ambientes hostiles.

La transferencia horizontal de genes entre bacterias puede darse, a su vez, mediante tres mecanismos.

  • En el proceso denominado transformación, las bacterias toman ADN directamente del medio que les rodea, incorporando así nuevos genes.
  • Los bacteriófagos o fagos (virus que infectan bacterias) pueden vehiculizar fragmentos del cromosoma bacteriano, incluyendo ARG, cuando durante la fase lítica pasan de una bacteria a otra. A este fenómeno se le denomina transducción.
  • A través de la conjugación, un plásmido conjugativo —molécula circular de ADN que contiene ARG y los genes que permiten su propagación— es transferido de una bacteria a otra mediante un proceso que requiere contacto directo entre ambas.

En este último caso, la bacteria receptora no sólo adquiere los ARG, sino que recibe todo el plásmido que los alberga. Esto le permite transferir ARG a otras bacterias, contribuyendo activamente a la diseminación de la resistencia a antibióticos entre bacterias.

Un problema de escala global

Los antibióticos liberados en el agua y los suelos ejercen una presión selectiva sobre las bacterias ambientales —las obliga a adquirir ARG para poder sobrevivir—, promoviendo la diseminación de genes de resistencia a antibióticos y con ello la proliferación de bacterias resistentes. Estos microorganismos pueden, a su vez, transmitir los ARG a través de plásmidos conjugativos u otros elementos genéticos móviles a otras bacterias, incluidas bacterias patógenas humanas.

Como consecuencia, cada vez son más frecuentes las infecciones por bacterias resistentes a antibióticos o peor, por bacterias multirresistentes (bacterias patógenas que han adquirido varios genes de resistencia).

Así se propaga la resistencia a los antibióticos en el medioambiente
Itziar Alkorta, Author provided (No reuse)

Desde la Universidad del País Vasco, junto con otros dos centros de investigación de la Comunidad Autónoma Vasca (Neiker y BC3 Basque Centre for Climate Change) hemos lanzado la iniciativa Joint Research Lab on Environmental Antibiotic Resistance para estudiar, monitorizar y desarrollar estrategias de actuación frente a este creciente problema.

Alcanzar una solución requiere de un enfoque multidisciplinar, que involucre, entre otros, a profesionales clínicos y del sector agroganadero, así como a expertos en evolución y medioambiente.

Muy probablemente, será necesaria la combinación de diferentes estrategias terapéuticas como la racionalización del uso de los antibióticos, la búsqueda de nuevos antibióticos y otras moléculas con capacidad antimicrobiana, el empleo de virus como alternativa a los antibióticos, el desarrollo de inhibidores de la conjugación y el trasplante de comunidades bacterianas que puedan competir con los patógenos.

Itziar Alkorta Calvo, Profesora del Departamento de Bioquímica y Biología Molecular del Instituto Biofisika, Universidad del País Vasco / Euskal Herriko Unibertsitatea y Carlos Garbisu, Jefe del Departamento de Conservación de Recursos Naturales

Este artículo fue publicado originalmente en The Conversation. Lea el original.

Leer en la Ser

Publicado en Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida

Nuevas pistas para localizar a LUCA, el primer ser vivo de la Tierra

Desde hace décadas, los biólogos tratan de encontrar los restos de nuestro Último Antepasado Común, el “padre” de toda la vida de nuestro planeta. Pero podrían haber estado buscándolo en el lugar equivocado

Todas las criaturas que pueblan la Tierra descienden de un único organismo. Uno que fue el primero, hace miles de millones de años, en estrenar todos los procesos físicos y químicos propios de lo que hoy llamamos «vida». Los científicos le han dado un nombre a este organismo: LUCA, del inglés Last Ultimate Common Ancestor o, en español, el Ultimo Antepasado Común.

La búsqueda de LUCA se ha convertido, desde hace décadas, en una especie de obsesión para los biólogos que estudian el origen de la vida en nuestro planeta. ¿Cómo era? ¿Dónde vivía? ¿Qué tipo de ambientes eran sus preferidos?

Las formas de vida más antiguas halladas en la Tierra tienen una edad de 3.760 millones de años. Pero las características de esos microbios, dotados ya de cierta complejidad y diversidad, hacen pensar que existió una forma de vida anterior, de la que todos descienden, y que esa forma de vida podría ser incluso varios cientos de millones de años más antigua.

Hasta ahora nadie ha conseguido identificar a LUCA. Pero las pistas que nos llevarán hasta él son cada vez más numerosas. No olvidemos que el código genético que LUCA inauguró es universal, esto es, compartido por todos los seres vivos presentes y pasados del planeta. Lo cual quiere decir que las características de LUCA están, en cierto modo, «grabadas» en el interior de nuestros propios genes.

Lo que sabemos sobre LUCA

Ahora, un equipo de investigadores del Instituto Pasteur, en París, ha encontrado una nueva pista sobre LUCA. Una que quizá nos permita, por fin, llegar hasta él. En un estudio recién publicado el biorxiv.org, en efecto, los científicos explican que el antepasado común de toda la vida terrestre prefería, probablemente, los climas moderados, y no el calor abrasador que en aquellos lejanos tiempos debió ser dominante y que muchos biólogos piensan que era el ambiente en el que LUCA se movía. El hallazgo, si se confirma, podría significar que hemos estado buscando a estos primeros organismos en el lugar equivocado.

Sabemos ya que LUCA apareció muy pronto en la historia de la Tierra, por lo menos hace 3.900 millones de años, y que relativamente poco tiempo después se dividió en dos grupos bien diferenciados, bacterias y arqueas, que en la actualidad dan cuenta de la inmensa mayoría de todas las especies vivas. Tuvieron que pasar miles de millones de años más para que aparecieran los primeros organismos pluricelulares, criaturas más complejas y formadas por múltiples células. De los casi 4.000 millones de años de historia de la vida en la Tierra, la inmensa mayor parte estuvo ocupada por estas criaturas unicelulares.

En su artículo, Ryan Catchpole y Patrick Forterre explican cómo han reexaminado toda la evidencia genética que indicaba, hasta ahora, que LUCA se adaptó a vivir en un ambiente de calor extremo. Y han llegado a la conclusión de que gran parte del trabajo científico anterior podría haber estado basándose en el rastreo erróneo de un gen clave, lo que alteró nuestra comprensión sobre el tipo de hábitat en en que LUCA prosperó.

Estanques a hasta 100ºC

Muchos biólogos, en efecto, han argumentado que LUCA vivía en lugares extremadamente calientes, como los estanques geotérmicos, donde las temperaturas superan ampliamente los 50, o incluso los 100 grados. Como ejemplo, esos investigadores señalan a muchas especies de arqueas actuales que viven y prosperan en ambientes de ese tipo. los organismos capaces de vivir en ambientes por encima de los 50 grados se denominan «termófilos», y los pocos conocidos capaces de sobrevivir por encima de los 80 grados reciben el nombre de «hipertermófilos».

¿A cuál de los dos tipos perteneció LUCA? El estudio de su genoma podría proporcionar piestas sobre la categoría a la que pertenece. Pero hasta ahora no se ha encontrado ni un solo ejemplar de este organismo. Sin embargo, en un magnífico estudio de 2016, un equipo de biólogos dirigido por Bill Martin, de la Universidad alemana de Düsseldorf, localizó genes universales en los genomas de algunos de los organismos más antiguos conocidos, genes que con toda probabilidad también estuvieron presentes en LUCA.

El equipo de Martin localizó 355 de estos genes. Entre ellos, uno que tiene la misión de codificar una proteína llamada girasa inversa, esencial para los hipertermófilos. Y aunque no está del todo claro qué es exactamente lo que hace este gen, sí que es cierto que se encuentra en los genomas de todos los hipertermófilos e incluso de algunos termófilos. Pero nunca en organismos «mesófilos», los que viven en ambientes a temperaturas inferiores a los 50 grados. Por lo tanto, su más que probable presencia en LUCA sugiere que, como mínimo, nuestro primer antepasado era termófilo.

En busca de genes universales

Pero Catchpole y Forterre no están tan seguros de eso. En su estudio, en efecto, identificaron 376 genes para la girasa inversa procedentes de 276 clases diferentes de arqueas y bacterias, y con ellos construyeron un árbol genealógico para establecer cómo esos genes se habían estado heredando desde la lejana época de LUCA. Para su sorpresa, su árbol no coincidía con los árboles conocidos para bacterias y arqueas, lo que sugiere fuertemente que el gen de la girasa inversa no era «original», sino que se había transferido después, y repetidamente, entre las varias especies.

Para los investigadores, esto significa que el gen no estaba presente en LUCA, sino que surgió más tarde, en un organismo posterior. Y si LUCA carecía del gen de la girasa inversa, no pudo haber sido un termófilo, amante del calor, ni mucho menos un hipertermófilo.

En resumen, Catchpole y Forterre piensan que podríamos haber estado buscando a LUCA en los lugares equivocados. El rastreo de criaturas tan extremadamente antiguas entraña una dificultad enorme, ya que los afloramientos de rocas de la Tierra primitiva son muy escasos. Quizá ahora, cambiando de estrategia, sea finalmente posible localizar a LUCA, nuestro antepasado más lejano, la primera criatura que estrenó la vida en la Tierra.

Leer en ABC

Publicado en Recursos, Reproductor

El cromosoma Y es enteramente prescindibleElizabeth Blackburn: “La pobreza acorta los telómeros”

Una científica de Hawai crea machos de ratón sin un solo gen del cromosoma masculino

Los ratones tienen el mismo sistema de diferenciación sexual que las personas: dos cromosomas X (abreviado XX) determinan una hembra; un cromosoma X y uno Y (abreviado XY) determinan un macho. El cromosoma Y es mucho más pequeño que el X, pero aun así tiene más de 50 millones de bases (las letras del ADN, gatacca…) y centenares de genes (458 genes en nuestra especie). De ahí la sorpresa que supone que todo él sea enteramente prescindible, como acaba de demostrar una genetista de Hawai.

El adverbio “enteramente” necesita una pequeña precisión, sin embargo. Los ratones macho que ha construido Monika Ward, del Instituto de Investigación en Biogénesis de la Universidad de Hawai, en Honolulu, no podrían reproducirse en la naturaleza. Pero la razón es, simplemente, que la naturaleza no dispone de clínicas de reproducción asistida para ratones. Los machos de Ward son perfectamente viables y producen células sexuales masculinas, pero necesitan que alguien se las inyecte a los óvulos de una hembra.

Los machos de Ward son perfectamente viables y producen células sexuales masculinas, pero necesitan que alguien se las inyecte a los óvulos de una hembra

De modo que no es exacto decir que el cromosoma Y no sirva para nada: sirve para ahorrarse los 3.000 pavos de la clínica de fertilidad. Para eso hemos quedado los machos en estos tiempos melancólicos. Ward y sus colegas de Honolulu, Manoa y Marsella presentan los resultados en Science.

De los centenares de genes del cromosoma masculino, solo dos son estrictamente necesarios para producir machos viables y fértiles (con la ayuda mencionada de la jeringuilla). Fue la propia Ward quien demostró esto hace dos años. Pero sus nuevos ratones no es ya que tengan un cromosoma Y con todos sus genes inactivados menos esos dos: es que carecen por completo del cromosoma Y. Su constitución genética no es XY, sino X0 (leído equis-cero), como se dice en la jerga.

El truco es el siguiente. Los dos genes importantes del cromosoma Y se llaman, de forma apasionante, Sry y Eif2s3y. El primero determina el desarrollo de los testículos en el embrión, y el segundo hace que proliferen las células precursoras de los espermatozoides. Pero estos dos genes no son una invención novedosa e irrepetible de los machos. Más bien son dos miembros de dos familias génicas que tienen varios representantes en el genoma, y algunos bien parecidos.

Basta aumentar la actividad del gen similar del cromosoma X para que se dispare la actividad de proliferación de los precursores de los espermatozoides

Lo que hace normalmente Sry es activar a otro miembro de su familia (Sox9) que vive en el cromosoma 11, y es éste el que después se encarga de todo lo demás (hacer los testículos). Ward y sus colegas han manipulado el gen Sox9 para que se active por sí mismo, sin necesidad de que se lo diga Sry. Y solo con eso ya no hace falta Sry.

Con Eif2s3y, la situación es aún más humillante para el sexo masculino. Porque el gen que ha elegido Ward para sustituirle está nada menos que ¡en el cromosoma X! En este caso, se trata de una mera cuestión de dosis. Basta aumentar la actividad del gen similar del cromosoma X para que se dispare la actividad de proliferación de los precursores de los espermatozoides.

“Son buenas noticias”, dice Ward. “Indican que hay estrategias de reserva en el genoma, que normalmente están silentes, pero son capaces de tomar el relevo en ciertas circunstancias”. Es una forma de verlo.

Leer en El País

Elizabeth Blackburn: “La pobreza acorta los telómeros”

La Nobel de Medicina investiga la conexión entre la longevidad, las enfermedades y las estructuras que protegen los cromosomas

Elizabeth Blackburn: “La pobreza acorta los telómeros”

Hay almejas que viven más de 500 años y tiburones antárticos que sobrepasan los 400. En cuanto a los humanos, la persona más longeva conocida fue la francesa Jeanne Calment, que vivió 122, aunque técnicamente se desconoce si hay algún límite de edad para los humanos. Si se le pregunta a la científica Elizabeth Blackburn (Australia, 1948) responderá que puede haber pistas en los telómeros, unas fundas protectoras de los cromosomas que se suelen comparar a las que hay en la punta de los cordones para impedir que se deshilachen.

La longitud de los telómeros está relacionada con el número de veces que una célula se podrá dividir para tener hijas. Hay un mecanismo natural por el que una enzima llamada telomerasa reconstruye los telómeros que se han acortado demasiado. Blackburn ganó el Nobel de Medicina en 2009 por codescubrir estas estructuras y la proteína que los protege. Desde entonces, estudios con humanos han demostrado una conexión entre los telómeros cortos y enfermedades crónicas y también con otras agresiones como el estrés; por ejemplo, hay madres que se tienen que hacer cargo de hijos enfermos y tienen telómeros más cortos que las de hijos sanos.

Blackburn también es famosa por haber llevado la contraria al expresidente de EE UU George Bush. En 2004 no fue renovada como miembro del consejo de asesores en bioética, según ella por oponerse a la postura del presidente a la investigación con células madre, de la que ella fue acérrima defensora.

En 2017 vivió otro pequeño terremoto ajeno a la ciencia cuando tres científicas del prestigioso Instituto Salk de California (EE UU), del que era presidenta, denunciaron a la institución por el acoso que sentían por parte de algunos hombres. Poco después la científica anunció su dimisión del cargo, que se hizo efectiva el verano pasado.

De visita en Madrid para participar en una gala de mujeres y ciencia organizada por el CNIO (Centro Nacional de Investigaciones Oncológicas) y por la iniciativa Constantes y Vitales, la bióloga molecular habla de telómeros y aborda la cuestión del acoso.

Para la mayoría de la gente acelerar el mecanismo de regeneración natural de los telómeros conlleva riesgos

Pregunta. ¿Qué se ha demostrado científicamente  sobre la relación entre los telómeros, la salud y la longevidad?

Respuesta. Hemos demostrado que cuando los telómeros se desgastan y acortan aumenta la probabilidad de sufrir alguna de las enfermedades crónicas relacionadas con el envejecimiento. Sabemos también que la velocidad con la que se degradan varía mucho de persona a persona, por lo que intentamos estudiar desde un punto de vista estadístico cuáles son los factores que les afectan. Es interesante porque aunque los genes juegan un papel, son los factores externos y los hábitos de vida los que hacen más contribución. Básicamente reduces esos impactos haciendo caso de lo que te decían tus padres: duerme bien, come bien, ten una buena actitud, no fumes, no bebas demasiado, come una dieta mediterránea y haz ejercicio. El estrés crónico debido a situaciones sociales como una situación económica mala, la pobreza, acorta los telómeros. Tenemos que empezar a pensar en nuevas políticas sociales en términos de cuánto afectan a los telómeros. Si miras a un nivel de poblaciones generales ves efectos cuantificables y los políticos que toman las decisiones podrían cambiar mucho de esos factores.

P. Usted creó una empresa que mide la longitud de los telómeros. ¿Aconseja a la población general que lo hagan?

Si las mujeres sienten que no pueden ser científicos de pleno derecho estás desperdiciando un talento enorme, es ridículo

R. No, no lo necesitan. Como individuos esta información no tiene tanto valor. Por ejemplo, recordemos el caso del tabaco. ¿De dónde venía la información que demostró que era malo para la salud? De estudios de población que demostraban que los fumadores tenían más cáncer de pulmón. Sabemos que fumar es una mala idea desde el punto de vista social y también individual, pero no porque tengamos una biopsia de pulmón para saberlo.

P. ¿Tiene sentido desarrollar fármacos para alargar los telómeros?

R. Por ahora no existe ni un solo medicamento que haya demostrado ser efectivo ni seguro. Puede que veamos anuncios en Internet, pero nada de eso se ha validado clínicamente para la población general. Hay enfermedades genéticas muy raras en las que un niño hereda una mutación que acorta dramáticamente sus telómeros y los desgasta muy rápido. Tal vez en esos casos una droga podría ser indicada, pero no antes de demostrar su seguridad. Para la mayoría de la gente acelerar el mecanismo de regeneración natural de los telómeros conlleva riesgos. Se sabe que las células del cáncer intentan regenerar sus telómeros para progresar. Si les das un poco de ayuda, aumentas los riesgos de que sufras algunos tipos de cáncer.

P. Un estudio de la Academia de Ciencias de EE UU dice que entre estudiantes y profesoras entorno al 40% de las mujeres de ciencia siente que han sufrido algún tipo de acoso.

R. Este es un problema generalizado, cultural, que no se limita a la ciencia. Hay cursos muy interesantes que cualquiera puede hacer para darse cuenta de sus sesgos inconscientes y cómo reconocerlos, tanto hombres como mujeres. Es un problema enorme, pero podemos empezar a reducirlo con leyes, con políticas en centros de investigación y empresas, pero al final la solución debe venir de que todos nos demos cuenta de nuestros prejuicios. Es una transición que necesita trabajo continuo. Si las mujeres sienten que no pueden ser científicos de pleno derecho desperdiciamos un talento enorme, es ridículo.

El problema más candente que afrontamos es solucionar los problemas de salud y en bienestar que causa el cambio climático

P. ¿Apoyó lo suficiente a las tres compañeras del Salk que denunciaron acoso?

R. Las apoyé mucho. He ofrecido todo mi apoyo a todas las mujeres del Salk. Tengo una historia. Yo implementé una nueva estrategia en el Salk para aumentar la transparencia, hice solicitudes abiertas, etc. Ya está hecho ese trabajo y el plan estará vigente cinco años, así que después de esto he decidido retirarme. Cumplo 70 años este año y no quiero ser uno de esos viejos que se agarran a su puesto. Ahora me interesa pensar en cómo usar la ciencia para influir en las grandes políticas.
como investigadora y esto sucedió al final de mi carrera.

P.  ¿Sería asesora del presidente Trump? ¿Cuál son las cuestiones actuales más candentes en bioética?

R. No, no lo haría aunque existiese un comité asesor de bioética para Trump. Creo que el desafío más candente será afrontar y solucionar los problemas de salud y en bienestar que causa el cambio climático.

Leer en El País

Documentados 17 casos inéditos de herencia de ADN mitocondrial paterno

Un nuevo estudio desbarata un dogma de la biología al encontrar transmisión genética de este orgánulo celular por vía masculina

ADN Ampliar foto
Los científicos ahora estiman que uno de cada 5000 bebés podría heredar mitocondrias de su padre. Unsplash

Cuando los padres de un niño de cuatro años lo llevaron al Hospital Infantil de Cincinnati, Ohio (EE UU) por su fatiga y debilidad muscular, nadie esperaba que su caso fuera a desatar una investigación científica que reescribirá los libros de texto. Eso es justamente lo que ha ocurrido: en un estudio publicado la semana pasada en la revista PNAS, los médicos describen cómo encontraron en el niño ADN mitocondrial heredado por vía paterna, algo que hasta ahora se creía imposible.

La transmisión de mitocondrias por parte del padre solo se ha observado, de manera excepcional, en un grupo muy reducido de animales, que incluye las ovejas, los ratones y las moscas del vinagre. Descubrirlo en personas echa por tierra un dogma de la genética y tiene implicaciones para el estudio de la evolución humana y para el diagnóstico y tratamiento de ciertas enfermedades. En análisis sucesivos los médicos observaron el mismo fenómeno en nueve familiares del chico, además de otras siete personas ajenas a la familia.

Inicialmente, el pediatra y genetista Taosheng Huang, que es el autor principal del estudio, sospechó que el pequeño podría tener una enfermedad mitocondrial. Las mitocondrias, los orgánulos encargados de dar energía a las células, portan un complemento propio de ADN, diferente al que se guarda en el núcleo celular. Ciertas mutaciones en alguno de los 37 genes mitocondriales, heredados en casi todos los animales exclusivamente por vía materna, producen enfermedades raras. Gracias a la secuenciación de su genoma, los médicos observaron que el niño no tenía ninguna mutación conocida de enfermedad mitocondrial, pero había diferencias entre el ADN de algunas de sus mitocondrias y las demás. Incrédulo, Huang pidió que se repitiera la muestra genética y envió parte de ella a dos laboratorios independientes para que la analizaran.

Los resultados no dejaron lugar a dudas: sus células portaban dos tipos de mitocondrias con genomas diferentes. El motivo, destapado tras examinar a toda la familia, es que su madre había heredado algunas mitocondrias paternas, además de las habituales por línea femenina. Solamente un caso estudiado por investigadores daneses en 2002 —verificado en Estados Unidos dos años más tarde— había documentado herencia mitocondrial paterna en una persona. Desde entonces no se había vuelto a observar el fenómeno, por lo que muchos pensaban que hubo un error en el análisis original.

Cuando un espermatozoide fecunda un óvulo, normalmente se activan mecanismos moleculares para destruir todas las mitocondrias masculinas. Se cree que esto puede ser una adaptación evolutiva para facilitar la coordinación entre el genoma mitocondrial y el nuclear. Otra teoría postula que la herencia exclusivamente materna ofrece protección contra el ritmo elevado de mutaciones que se da en el ADN mitocondrial de los espermatozoides. En cualquier caso, el embrión normalmente crece solo con mitocondrias de la madre.

Huang y su equipo creen que los casos de herencia mitocondrial biparental se deben a la mutación de un gen en el núcleo, no en las mitocondrias. Desde el genoma nuclear se coordina el proceso de destrucción de los componentes celulares que sobran una vez completada la fecundación. Según contó al canal estadounidense Nova la bióloga del desarrollo Florence Marlow, de la Escuela de Medicina de Icahn en el Monte Sinaí de Nueva York, un fallo en este proceso puede permitir la supervivencia de las mitocondrias masculinas que se infiltran en el óvulo. El cigoto acaba con mitocondrias genéticamente distintas, una por cada progenitor, y estas proliferan en las divisiones celulares posteriores. Los autores del estudio estiman que uno de cada 5.000 bebés podría heredar ADN mitocondrial paterno de esta forma.

La herencia de ADN mitocondrial paterno podría afectar al conocimiento científico sobre la evolución humana y al tratamiento de ciertas enfermedades genéticas

Si es así, los descubrimientos podrían afectar al conocimiento científico sobre la evolución humana. Dado que el ADN mitocondrial de una madre en principio nunca se recombina con el del padre, constituye un certificado de identidad genética estable para cada línea materna de la genealogía humana. Al identificar dos poblaciones humanas con genomas mitocondriales parecidos en distintos puntos del planeta, se puede inferir que tuvieron un ancestro femenino común, y se puede calcular aproximadamente hace cuánto, conocido el ritmo al que se acumulan nuevas mutaciones en el ADN mitocondrial.

Estos cálculos se basan en la suposición —ahora demostrada incorrecta— de que los hombres nunca pasan mitocondrias de los espermatozoides a sus hijos. Queda por determinar si los casos excepcionales de herencia biparental afectarán a la eficacia de las técnicas de estudio genealógico, aunque los autores afirman que estos casos “no parecen haber dejado una marca detectable en el registro genético de la humanidad”.

Por otra parte, el hallazgo abre nuevas posibilidades médicas. “Dada la implantación cada vez más amplia de las metodologías de secuenciación genómica en el ámbito clínico, los laboratorios clínicos que analicen ADN mitocondrial deben prestar atención a los datos de secuenciación para detectar esta rara, aunque posible, herencia biparental”, dice Miguel Ángel Martín, investigador clínico de enfermedades mitocondriales en el hospital 12 de Octubre de Madrid.

Actualmente, las mujeres con enfermedades mitocondriales tienen la posibilidad en algunos países de gestar bebés sanos con la técnica de los “tres padres genéticos”, gracias a una donante de mitocondrias. Si se descubren los genes nucleares que regulan la herencia mitocondrial, en un futuro se podría inducir la transmisión de las mitocondrias paternas para prescindir de la donante. Además, dice Martín, “si se encontrara ese factor o gen responsable nuclear, es predecible que las posibilidades de tratamiento y asesoramiento genético serían similares a las existentes para otras enfermedades genéticas”.

Leer en El País

Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

El enigma del origen de la célula moderna

Científicos de Barcelona aclaran uno de los momentos cruciales en la evolución de la vida

Oculta en lo más profundo de cada una de nuestras células, disfrazada como uno más de sus departamentos de gestión e integrada hasta la médula en su lógica metabólica, habita una primitiva bacteria que nadó libre por los océanos del eón Arcaico, hace 2.500 millones de años. Hoy la llamamos mitocondria, y lo que queda de su genoma –el ADN mitocondrial— sirve a menudo para identificar a los criminales y a sus víctimas. Entender cómo aquella bacteria libre se convirtió en nuestra mitocondria es entender el origen de la célula moderna, y el episodio más importante de la evolución desde el inicio de la vida.

Alexandros Pittis y Toni Gabaldón, del Centro de Regulación Genómica de Barcelona (CRG), han husmeado ahora en la noche de los tiempos, remontándose hasta los orígenes de la célula moderna –la célula eucariota, de la que estamos hechos todos los animales, los hongos y las plantas— con los métodos actuales de la biología evolutiva, unos sofisticados algoritmos que comparan los genomas para deducir los árboles genealógicos de sus portadores. Los resultados, que presentan en la revista Nature, son fáciles de resumir: las mitocondrias llegaron tarde a nuestras células. Para entenderlos, sin embargo, tenemos que retrasar el reloj 2.500 millones de años, hasta el suceso esencial de la historia de la vida en la Tierra.

Nuestro planeta tiene 4.500 millones de años, un tercio de la edad del universo, y los primeros microbios (células procariotas, en la jerga, que incluyen bacterias y arqueas) no tardaron mucho en aparecer: hay evidencias fósiles de hace 3.500 millones de años, y el planeta era probablemente un infierno en la etapa anterior. Pese a ello, la gran invención evolutiva de la historia de la vida, la célula eucariota, solo surgió hace 2.000 o 2.500 millones de años.

Entender cómo aquella bacteria libre se convirtió en nuestra mitocondria es entender el origen de la célula moderna, y el episodio más importante de la evolución desde el inicio de la vida

La célula eucariota es un autómata biológico mucho más avanzado que las bacterias y arqueas que la precedieron. Tiene el genoma organizado en cromosomas de compleja estructura y confinado en un núcleo, que le da el nombre “eucariota” (las bacterias y arqueas tienen el ADN suelto, sin un núcleo, y por eso se llaman procariotas). Además, tienen un sofisticado andamiaje, o citoesqueleto, que permite a nuestras neuronas, por ejemplo, formar sus largos axones y dendritas. Y tiene orgánulos (pequeños órganos), como las mitocondrias, que producen y gestionan la energía celular.

Los evolucionistas saben hoy que las mitocondrias provienen de antiguas bacterias, y que nuestro genoma contiene genes de bacterias y de arqueas. La teoría dominante, de hecho, es que la célula eucariota se originó por la fusión de una arquea y una bacteria, y que la mayor parte de los genes de la bacteria se asociaron a los de la arquea para formar el núcleo. Pittis y Gabaldón ha mostrado que no es así.

“Hay teorías para todos los gustos”, dice Gabaldón, “y algunas son muy bonitas, como la de que el núcleo surgió como un mecanismo de defensa contra las mitocondrias”. Pero no son más que teorías, advierte. Los dos científicos del CRG han buscado datos firmes, y han podido refutar la teoría dominante.

“Los genes de las proteínas mitocondriales tienen las ramas más cortas, en los árboles filogenéticos, que los que hace las proteínas del núcleo y de otras estructuras celulares”, dice Gabaldón. “Y el núcleo ya era una combinación de genes de bacterias y arqueas antes de la llegada de las alfa-proteobacterias, las bacterias precursoras de las mitocondrias”. El origen de la célula moderna no fue, por tanto, un suceso único de simbiosis, sino una simbiosis serial.

Hay teorías para todos los gustos, y algunas son muy bonitas, como la de que el núcleo surgió como un mecanismo de defensa contra las mitocondrias

Las proteínas más viejas de la célula eucariota provienen sobre todo de arqueas, según los datos de los investigadores de Barcelona. Se ocupan de las funciones autoalusivas de nuestras células: la replicación del genoma, su transcripción (o copia a ARN, una molécula similar al ADN, pero con una sola hilera de letras en vez de dos) y la traducción de éste al lenguaje de las proteínas, que son las nanomáquinas que ejecutan todas las funciones celulares.

Las proteínas de edad intermedia son de origen bacteriano, pero no de las alfa-proteobacterias que originaron las mitocondrias, sino de otros grupos de bacterias muy distintos. Curiosamente, estas proteínas están hoy, sobre todo, en los sistemas de membranas intracelulares (retículo endoplásmico y aparato de Golgi, llamado así por el gran rival de Ramón y Cajal).

Como toda buena investigación, la de Pittis y Gabaldón plantea más preguntas que respuestas. Una de las mejores es: ¿de qué bacteria salieron esos sistemas membranosos, junto a los genes para fabricar sus proteínas? Gabaldón se muestra cauto: ha visto caer demasiadas teorías bonitas en los últimos 20 años.

Leer en El País

Un fósil millones de años dentro de nuestras células

Nuestro metabolismo ya existía hace 3.000 millones de años, antes que nuestros genes

Recreación de la Tierra durante el eón Arcaico Ampliar foto
Recreación de la Tierra durante el eón Arcaico, en los albores de la vida, de 4.000 a 2.500 millones de años atrás. The Archean World / Peter Sawyer

Los estudiosos del origen de la vida se enfrentan a una paradoja circular (como la del huevo y la gallina) que, probablemente, puede considerarse el más profundo misterio de la biología evolutiva. Toda la vida que conocemos tiene un fundamento doble: la auto-replicación, o capacidad de un organismo para sacar copias de sí mismo, y el metabolismo, la cocina de la célula que fabrica continuamente sus componentes básicos. Hoy están vinculados de forma inextricable, pero ¿cuál surgió primero en la noche de los tiempos? ¿Y de qué servía el uno sin el otro?

Una investigación bioquímica que imita las condiciones de los sedimentos del eón Arcaico (en los albores de la vida en la Tierra, hace de 4.000 a 2.500 millones de años atrás) muestra que dos rutas metabólicas (cadenas de reacciones químicas, o la cocina de la célula) ya funcionaban entonces igual que ahora, dentro de cada una de nuestras células. Tanto en la era Arcaica como hoy mismo, esas rutas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro. Es un fuerte indicio de que el metabolismo es anterior a las enzimas (proteínas con actividad catalítica) que lo ejecutan hoy. Y también, proponen los autores, a los genes que contienen la información para fabricar esas enzimas.

Tanto en la era Arcaica como hoy mismo, las rutas metabólicas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro

Una de las implicaciones más extraordinarias del trabajo de Markus Keller y Markus Ralser, del Centro de Biología de Sistemas de la Universidad de Cambridge, y sus colegas, que se presenta en Science Advances, es que llevamos dentro de cada una de nuestras células un testigo de la Tierra primitiva, como un trozo del pasado remoto: un sistema complejo y autoconsistente que, posiblemente, empezó a funcionar antes de la invención de la primera bacteria del planeta. Más aún: una invención que fundamentó la evolución de la primera bacteria. Un invento tan brillante que 3.000 millones de años de evolución no han podido superar. Da vértigo. Casi da hasta asco.

La máquina del tiempo de Keller y Ralser se basa, de manera paradójica, en la tecnología biológica más avanzada, la metabolómica. Si la genómica es el estudio simultáneo de todos los genes, y la proteómica el de todas las proteínas. La metabolómica lo es de todos los metabolitos, las moléculas simples (como la glucosa, la ribosa o el oxalato) que le sirven a toda célula para cocinar todo el resto de sus componentes, como los carbohidratos, las grasas, las proteínas y los genes.

Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. ampliar foto
Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. MARKUS KELLER

Los científicos de Cambridge se han centrado en dos de las rutas esenciales de ese metabolismo central que ocupa el centro de la cocina celular de todas las especias vivas. Se trata de la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo. Convierten los azúcares como la glucosa (la comida) en energía (la gasolina), y también aportan la materia prima para construir muchos otros componentes celulares.

La vida no podría haber surgido en el universo joven, poco después del Big Bang. Porque del Big Bang solo salieron los elementos más simples, el hidrógeno y el helio, y los sistemas biológicos necesitan átomos más pesados, como el carbono y el nitrógeno, y algunos mucho más pesados, como los metales que catalizan las reacciones esenciales. Entre estos últimos, el más importante durante el eón Arcaico en que evolucionó la vida primitiva era el hierro (concretamente el hierro ferroso, por oposición al hierro férrico, más conocido como óxido en el lenguaje común).

Los científicos de Cambridge se han centrado en la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo

Y es a este hierro (ferroso) al que responden los ciclos metabólicos de los investigadores de Cambridge. El hierro cumplía en aquella noche de los tiempos la función que hoy tienen las enzimas metabólicas, las nanomáquinas de gran complejidad que catalizan hoy esas mismas reacciones. Pero que, como atavismo del pasado remoto, siguen conservando en sus centros activos, o núcleos lógicos, el mismo metal, y en el mismo estado de oxidación (ferroso) que entonces.

Hoy hace falta un gen para fabricar un catalizador (una enzima). Entonces solo hacía falta comerse el hierro del océano circundante. Sí, puede que la vida fuera más fácil en el pasado. Pero también era menos interesante.

Más aún, nuestros procesos metabólicos centrales, los que operan en nuestras neuronas para alimentarlas de energía y materiales de construcción, siguen revelando cierta capacidad de auto-sostenimiento que no depende de las enzimas codificadas por los genes, sino del mero hierro (ferroso) que las antecedió en ese papel.

No hemos cambiado tanto en los últimos 3.000 millones de años. Al menos no tanto como en los últimos 10.

Leer en El País

 

Publicado en 3º ESO, Recursos, Reproductor

22 increíbles imágenes que muestran las etapas de desarrollo de un bebé antes de nacer

Un fotógrafo entusiasta de la ciencia nos muestra el increíble desarrollo de un feto usando un cistoscopio

El fotógrafo sueco Lennart Nilsson (1922 – 2017) fue un entusiasta de la ciencia cuyo amor por la fotografía lo llevó a hacer algo increíble usando un cistoscopio.

En 1965, la revista LIFE publicó varias de sus increíbles imágenes sobre el proceso de cómo se concibe un niño. Las primeras imágenes que tomó en 1957 fueron en blanco y negro y no del todo claras. Sin embargo, repitió el mismo proceso en 1965 y produjo fotos tan sorprendentes que no pudimos resistirnos a compartirlas con ustedes.

La etapa inicial de la concepción

El esperma se está moviendo hacia el óvulo a través de la trompa de Falopio.

El espermatozoide nadó rápidamente hacia el huevo a través de la trompa de Falopio

El huevo con el que se fusionará el esperma.

La atracción

El momento en que el esperma se encuentra con el óvulo. Una etapa muy crucial.

La entrada

Uno de cada muchos espermatozoides es elegido para fusionarse con el óvulo.

Una imagen cercana de un espermatozoide

La cabeza del espermatozoide tiene todo el material genético.

Bebe en el vientre

El embrión tarda una semana en moverse desde la trompa de Falopio hasta la matriz. Y aquí empieza el parto.

Implantación

Ha pasado una semana, y el embrión está unido a la pared del útero. Esta etapa es crucial para que nazca el bebé.

Día 22

Un embrión de 22 días se ve así. La zona gris más tarde se convierte en un cerebro.

Golpear el corazón el día 18

El corazón del niño que nace se desarrolla en el día 18.

Día 28

Así es como se ve el feto después de 28 días de fertilización.

La cara comienza a desarrollarse

Después de cinco semanas, el feto mide aproximadamente 9 milímetros y comienza a desarrollar las grietas de la cara.

Día 40

La placenta comienza a formarse alrededor del día 40.

El comienzo de la vida continúa formándose

Han pasado ocho semanas, y cada etapa inicial ha sido cruzada. Así es como luce un embrión de ocho semanas.

Semana 10

Los párpados finalmente se abren durante la décima semana y, lentamente, se forman los ojos.

Las manos empiezan a moverse lentamente

El feto entiende el útero usando los dedos.

Semana 16

La forma del bebé adulto es visible.

Nervios desarrollados

Puede visualizar los vasos sanguíneos del bebé bajo la piel translúcida.

Semana 18

En la semana 18, el feto puede comenzar a detectar el sonido que proviene del ambiente exterior.

Semana 19

El feto ahora tiene uñas, cejas y pelo.

Semana 20

Aproximadamente el feto ahora mide 20 cm. El pelo lanudo, conocido como lanugo, cubre toda su cabeza.

Semana 24

Fase de desarrollo cerebral.

Semana 26

Ver en nation.com