Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

¿Por qué se hicieron gigantes los dinosaurios?: el descubrimiento en Argentina que puede ayudar a resolver el misterio

¿Cómo llegaron los dinosaurios a ser animales gigantes?

Un descubrimiento en Argentina revela algunas claves para responder esa pregunta, uno de los grandes enigmas de la paleontología.

El hallazgo es tan extraordinario que los científicos pensaron al principio que se trataba de una broma.

Diego Abelín, técnico del CONICET y del Museo de Ciencias Naturales de la Universidad de San Juan, fue quien halló en 2015 los primeros huesos en esta provincia argentina.

Los huesos eran demasiado grandes para ser de dinosaurios del período Triásico, al que correspondían las excavaciones. Abelín pensó que se trataba de restos de una vaca y dijo en tono jocoso a sus compañeros que había hallado el fósil de un «dinosaurio gigante».

Pero lejos de ser una broma, esos primeros huesos eran parte un gran descubrimiento.

«Comprobamos que se trataba de una nueva especie a la que llamamos Ingentia prima, que en latín significa ‘primer gigante'», dijo a la BBC la autora principal del nuesvo estudio, la paleontóloga Cecilia Apaldetti, investigadora del CONICET y de la Universidad Nacional de San Juan

«El descubrimiento de Ingentia cambia nuestro entendimiento acerca de cómo los dinosaurios evolucionaron hacia el gigantismo», dijo la paleontóloga a BBC Mundo.

«Hasta hace poco considerábamos que el camino fue uno, el que tomaron los Eusauropods—los animales mas grandes que vivieron en nuestro planeta—el cual implica cambios graduales en su anatomía durante mas de 30 millones de años», agregó Apaldetti.

«Pero este descubrimiento nos muestra un nuevo camino a través de una novedosa estrategia de crecimiento que les permitió ser gigantes en un momento temprano de su historia evolutiva.

Más grande que un elefante

Los científicos excavaron huesos de dos seres.

«Estimamos que Ingentia pesaba entre 7.000 y 9.000 kilos, un poco más que un elefante actual, y podría haber llegado a unos ocho o diez metros de longitud«, explicó a BBC Mundo Diego Pol, investigador del CONICET, paleontólogo del Museo Feruglio de Trelew, Argentina, y coautor del estudio.

Los huesos correspondían al Triásico, hace unos 200 millones de años, un período en el que se pensaba que no había dinosaurios tan grandes.

Dinosaurios gigantes tan conocidos como el Diplodocus o el Brachiosaurus aparecieron unos 50 millones de años después.

El «primer gigante» vivió cuando el planeta estaba formado por Pangea, un gran supercontinente que amalgamaba todas las placas continentales, señaló Pol

«Sudamérica formaba parte de este gran supercontinente y sus áreas vecinas eran lo que hoy es África. El océano Atlántico no existía y, en la parte sur, Sudamérica estaba unida a la Antártida», señala.

Gigantismo

¿Por qué es Ingentia prima un hallazgo tan extraordinario?

«Cuando los dinosaurios aparecieron sobre la faz de la Tierra y empezaron a evolucionar hace aproximadamente unos 230 millones de años tenían un tamaño muy, muy pequeño. Eran animales que tenían el tamaño de unos pequeños lagartos», explicó Pol.

«Mucho después en el transcurso de la evolución sabíamos que los dinosaurios habían alcanzado los tamaños colosales que tienen especies como Diplodocus o Brachiosaurus, todos estos grandes cuadrúpedos de cuello largo y cola larga».

Diplodocus, por ejemplo, puede haber alcanzado una longitud de cerca de 30 metros y un peso de 15 toneladas.

El descubrimiento de Ingentia prima es muy significativo, según Pol, porque indica que el primer paso al gigantismo «se dio poco tiempo después que los pequeños primeros dinosaurios aparecieran en la Tierra».

«Ingentia nos está diciendo que la adquisición del gigantismo es un evento evolutivamente mucho más rápido que apareció 30 millones de años antes de lo que imaginábamos hasta hace pocos días».

Creciendo a estirones

Al cortar el hueso de un dinosaurio pueden verse anillos de crecimiento, similares a los hallados en los árboles, que delatan períodos de mayor o menor crecimiento, explicó Pol.

«De esos anillos pudimos observar que en Ingentia había períodos bien marcados de crecimiento veloz«, señaló Apaldetti.

Pol explicó a BBC Mundo que los dinosaurios primitivamente crecían de manera estacional, mucho más en la temporada de verano y primavera, y detenían su crecimiento en la temporada más fría del año.

Por otra parte, se sabía que los dinosaurios gigantes adquirieron su tamaño mediante un gran aumento en la velocidad de crecimiento.

«Lo que los científicos nunca habíamos encontrado era una etapa intermedia entre los dinosaurios que crecían por temporadas y los gigantes que crecían a una velocidad muy rápida».

Apaldetti explicó que «mientras los dinosaurios gigantes del Jurásico crecían de manera acelerada y continua hasta llegar a ser adultos, los dinosaurios primitivos del Triásico (Lessemsauridos) lo hacían de forma estacional, de manera similar a lo que vemos en el crecimiento de los árboles».

La investigadora señaló que «lo que diferencia a estos primeros gigantes de la familia Lessemsauridae es que crecían de manera cíclica pero extremadamente acelerada. Lo más sorprendente es que durante la estación de crecimiento acelerado lo hacían a una velocidad aún mayor a la de los gigantes que crecían de manera continua».

«Lo que encontramos en Ingentia es que tenía un tipo de crecimiento nuevo que no conocíamos hasta el momento», afirmó Pol.

Sacos aéreos

Los huesos del primer gigante hallado en San Juan tienen sacos aéreos, lo que revela un sistema respiratorio similar al de las aves.

«El sistema respiratorio de las aves es extremadamente complejo, mucho más complejo que el que tenemos nosotros los mamíferos», dijo Pol.

«Además de tener los pulmones como cualquier otro animal, las aves tienen lo que llamamos sacos aéreos. Son unas extensiones del sistema respiratorio, unos sacos conectados al sistema respiratorio que invaden la cavidad interna de los diferentes huesos de las vértebras, de la cintura, del hombro, incluso algunas partes de los miembros».

«Cuando estudiamos los huesos, si encontramos esos tipos de cavidades que son muy particulares y se diferencian de cualquier tipo de cavidad en un esqueleto, podemos inferir la presencia de este sistema respiratorio extremadamente complejo y eficiente»

Las aves son los parientes más cercanos que existen de los dinosaurios y hace varias décadas que se reconoce que la aparición de este sistema de respiración tan complejo era común en varios grupos de dinosaurios, señaló Pol.

Apaldetti dijo a BBC Mundo que «el nuevo descubrimiento muestra que con sólo pocas innovaciones se podía adquirir las tallas corporales más grandes (>10 toneladas) en un momento donde los vertebrados de los ecosistemas terrestres no superaban tallas medianas (<3 toneladas)».

«Con sólo un acelerado crecimiento óseo y un desarrollado sistema de respiración del tipo aviano, estos animales lograron imponerse como los primeros animales gigantes», agregó la paleontóloga.

El problema de ser gigante

Los sacos aéreos eran clave para Ingentia.

«Cuando un animal es gigante, uno de los desafíos más grandes que tiene es tener un metabolismo suficientemente alto como para cumplir con toda la demanda energética que implica ser gigante. Caminar cuesta más, reproducirse cuesta más«, afirmó Pol.

«Y eso implica la necesidad de tener un consumo de oxígeno mucho más alto y eficiente que en animales mas pequeños. Entonces, el origen de este sistema de extensiones del sistema respiratorio en los sacos aéreos pudo haber facilitado el desarrollo de tamaños corporales muy grandes en estos dinosaurios«.

Los sacos aéreos en los huesos también ayudaban a disipar el calor y a aliviar al esqueleto.

«Los mamíferos disipamos calor a través de la transpiración pero los reptiles no transpiran y expulsan el calor de su cuerpo a través del sistema respiratorio».

En familia

Los científicos pudieron determinar que Ingentia tenía similitudes con otro dinosaurio hallado en Argentina y uno en Sudáfrica.

«Cuando estudiamos estos dinosaurios en conjunto desde un punto de vista evolutivo, nos dimos cuenta que compartían características únicas y esto nos llevó a reconocer una familia nueva de dinosaurios que lleva el nombre de lessemsaurios«.

«Estos antiguos gigantes seguramente fueron una familia exitosa en la parte sur de este supercontinente llamado Pangea en lo que hoy es Sudamérica y Sudáfrica, y fueron los primeros que experimentaron estas estrategias de crecimiento acelerado que llevaron a los dinosaurios a ser los animales más grandes en la historia de la vida del planeta».

Ingentia es «la piedra roseta que nos llevó a unir varias piezas en este rompecabezas prehistórico».

«Uno de los fenómenos más fascinantes»

El hallazgo del primer gigante emociona a Pol.

«Cuando uno ve los restos tan extraordinarios y gigantes de un dinosaurio realmente surge la pregunta de cómo llegaron estos animales a ser tan grandes».

Entender los orígenes de este gigantismo, los pasos que llevaron a que estos animales pudieran alcanzar un tamaño tan grande es «uno de los misterios más grandes que hay en el estudio de los dinosaurios«, afirmó el paleontólogo a BBC Mundo.

«Los fósiles capturan transformaciones evolutivas justo cuando estaban ocurriendo en nuestro planeta e Ingentia está capturando el inicio de uno de los fenómenos más fascinantes en la historia de la vida que es el gigantismo de los dinosaurios».

Por su parte, Apaldetti dijo a BBC Mundo: «Personalmente creo que este descubrimiento resalta diferentes aristas de nuestro trabajo».

«Por un lado la importancia del apoyo a la ciencia que es la base para el desarrollo cultural en las sociedades, la transmisión de pasiones a generaciones futuras, y como mujer en la ciencia—que muchas veces no es simple—la valoración de nuestro rol en un momento crucial donde las mujeres se han puesto de pie y se están haciendo escuchar en el mundo entero».

Puedes ver aquí el estudio publicado en la revista Nature Ecology and Evolution

Leer en BBC

Publicado en 1º Bachiller, 4º ESO, Biologia y Geología, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

¿De donde vienen las plumas? Las aves no fueron las primeras en tenerlas

Si nos preguntan sobre un carácter exclusivo de las aves creo que sin dudas la mayoría contestaríamos la presencia de plumas en su tegumento, pero esto no es del todo correcto. Todas las aves tienen plumas pero no son exclusivas de estos animales, otros grupos taxonómicos tuvieron plumas pero sucede que se extinguieron.

Plumas de flamenco

Algunas especies de dinosaurios, del cual las aves también forman parte, presentaban su cuerpo recubierto de plumas [1]. Un ejemplo interesante son los velociraptores, dinosaurios de 50 centímetros de alto y con presencia de plumas [2] (sí, Steven Spielberg nos mintió en la cara 😛 ).

¿Pará pará pará, vos me estás diciendo que las aves son dinosaurios?

Así es, las aves pertenecen a un grupo de dinosaurios principalmente carnívoros llamados terópodos (“pie de bestia”) [1], [3], [4] al igual que Velociraptor mongoliensis, Tyrannosaurus rex o Giganotosaurus carolinii, este último el dinosaurio predador más grande del planeta que vivió en lo que hoy es nuestra Patagonia [5], [6]. Los científicos agrupan a todos los representantes de los terópodos según ciertas características del cráneo, la faja pectoral y las extremidades posteriores, entre otras [1].

Algunas características de las aves más primitivas

El grupo de aves más antiguas conocidas hasta el momento se denominan Archaeopteryx [7]. Las mismas presentaban un cráneo de unos 4 centímetros [1], un peso de entre 220–330 gramos [8] (tamaño similar a Guira guira) y habitaron en zonas de la actual Alemania hace unos 150 millones de años, aproximadamente [1].

Representación gráfica de el ave primitiva Archaeopteryx.

En el presente año se dio a conocer una investigación que concluye con que Archaeopteryx, si bien eran bastante terrestres, probablemente podrían volar aunque no de la misma forma que lo hacen las aves modernas [9]. Uno de los autores del trabajo invita a pensar en el vuelo de una mariposa para tratar de imaginarnos el de Archaeopteryx [10].

Cabe destacar que su categoría como aves pende de un hilo debido a descubrimientos de nuevos fósiles en China durante la última década. Si se confirman los datos con nuevas investigaciones tendremos que emprender la búsqueda de otra primer ave [7].v

La función de las plumas en las aves

A pesar de que las plumas le permitieron volar a Archaeopteryx, estas estructuras no habrían evolucionado para tal fin. Se han propuesto varias hipótesis sobre el valor adaptativo original de las plumas: aislamiento térmico, termorregulación activa, vuelo, cortejo y camuflaje. No sería descabellado pensar que, desde el principio, las plumas se utilizaban para varios fines, como lo son ahora. Pero la evidencia parecería indicar que la hipótesis más plausible es que las plumas se originaron con el fin de aislamiento térmico y termorregulación, aunque se necesitan más investigaciones para asegurarlo [11], [12].

¿Cómo empezaron a volar las primeras aves?

Otra controversia que se presenta es el origen del vuelo, representado por la pelea entre los defensores de modelos arbóreos y cursoriales (adaptado para correr).

La teoría arbórea

La primera hipótesis, aunque quizá más intuitiva, plantea que las aves comenzaron a volar “desde los árboles hacia abajo”. Sin embargo, carece de soporte debido a que requiere que el animal haya adquirido previamente la capacidad de trepar los árboles, y porque ningún animal viviente que trepa aletea sus apéndices para volar.

Teoría arbórea
Teoría arbórea. Las aves habrían aprendido a volar «desde arriba», es decir, trepando a los árboles y cayendo.

La teoría cursorial

La segunda hipótesis, plantea que las aves comenzaron a volar “desde el suelo hacia arriba”, siendo, principalmente, corredoras. No obstante, esta hipótesis tampoco es muy convincente debido a que es inconsistente con la biología ontogenética (formación y desarrollo) de las formas de vida existentes; por ejemplo, ninguna especie existente utiliza sus alas para correr más rápido, para asegurar su presa o para deslizarse.

Teoría Cursorial
Teoría Cursorial. Las aves habrían aprendido a volar, corriendo y dando pequeños saltos.

Nuevas hipótesis modernas

Actualmente, con el avance de la ciencia, están surgiendo nuevas hipótesis y entre ellas la hipótesis del ala ontogenética-transicional, la cual parecería una de las más plausibles. La hipótesis postula que las etapas de la evolución del vuelo de las aves corresponden, tanto desde el punto de vista del comportamiento como morfológico, a las etapas de transición observadas en el desarrollo de las aves actuales. Esto quiere decir que las primeras aves podrían haber intentado un vuelo de manera similar al que tienen los juveniles de las aves actuales, lo que les permitiría afrontar los desafíos de un terreno con muchos desniveles [13].

A partir de aquí mucho ha pasado, desde radiaciones evolutivas (rápidas especiaciones) hasta grandes extinciones, para llegar a la diversidad de especies de aves que disfrutamos en cada salida de observación. A pesar de lo que conocemos queda mucho más por estudiar de este maravilloso grupo de animales, por lo que debemos protegerlas de nosotros mismos para poder seguir haciéndolo y sorprendernos cada día más con los nuevos descubrimientos.

Guacamayo Rojo
Guacamayo rojo (Ara chloropterus) volando.

Escrito por: Biol. Gabriel Orso, miembro de Fundación MIL AVES (https://milaves.org/)

Editado por: Lautaro Baró para Biología Cotidiana

Referencias:

  1. Padian, K., & Chiappe, L. M. (1998). The origin and early evolution of birds. Biological reviews, 73(1), 1-42.
  2. Turner, A. H., Makovicky, P. J., & Norell, M. A. (2007). Feather quill knobs in the dinosaur Velociraptor. Science, 317(5845), 1721-1721.
  3. Norman, D. B., Baron, M. G., & Barrett, P. M. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature, 543(7646), 501.
  4. Langer, M. C., Ezcurra, M. D., Rauhut, O. W., Benton, M. J., Knoll, F., McPhee, B. W., … & Brusatte, S. L. (2017). Untangling the dinosaur family tree. Nature, 551(7678), E1.
  5. Coria, R. A., & Salgado, L. (1995). A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature, 377(6546), 224.
  6. Therrien, F., & Henderson, D. M. (2007). My theropod is bigger than yours… or not: estimating body size from skull length in theropods. Journal of Vertebrate Paleontology, 27(1), 108-115.
  7. Smithsonian magazine. (2011). An Ode to Archaeopteryx. Washington, D.C., E.U.: Smithsonian Institution. Recuperado de https://www.smithsonianmag.com/…/an-ode-to-archaeopteryx-6…/.
  8. Yalden, D. W. (1984). What size was Archaeopteryx?. Zoological Journal of the Linnean Society, 82(1‐2), 177-188.
  9. Voeten, D. F., Cubo, J., Margerie, E., Röper, M., Beyrand, V., Bureš, S., … & Sanchez, S. (2018). Wing bone geometry reveals active flight in Archaeopteryx. Nature communications, 9(1), 923.
  10. The Washington Post. (2018). This feathery dinosaur probably flew, but not like any bird you know. Washington, D.C., E.U.: The Washington Post.
  11. Bock, W. J. (2000). Explanatory history of the origin of feathers. American Zoologist, 40(4), 478-485.
  12. Xu, X., Wang, K., Zhang, K., Ma, Q., Xing, L., Sullivan, C., … & Wang, S. (2012). A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature, 484(7392), 92.
  13. Dial, K. P., Jackson, B. E., & Segre, P. (2008). A fundamental avian wing-stroke provides a new perspective on the evolution of flight. Nature, 451(7181), 985.
Publicado en Artículos científicos, Ciencia, Nutrición, Recursos

¿Por qué se considera al microbioma como nuestro segundo genoma?

La microbiota intestinal es un campo de investigación en constante desarrollo que despierta cada vez mayor interés en los medios de comunicación y la sociedad. Prueba de ello son los innumerables artículos de prensa y programas de televisión y radio que tratan sobre su papel potencial en nuestra salud física e incluso en la psicológica. De todos ellos, nos ha llamado particularmente la atención una nueva serie de la BBC.

BBC Radio 4 ha dedicado una serie de tres episodios de 30 minutos al microbioma humano, al que describe como “el extraño mundo invisible del nosotros no humano”.

El programa se centra esencialmente en el papel clave de la microbiota intestinal y su influencia sobre nuestra salud desde el momento en que nacemos. Se presenta a la microbiota intestinal como un acceso abierto al cerebro con el potencial para mejorar la salud mental a la larga. La serie también intenta dar respuesta a la pregunta de cómo modelar la microbiota intestinal para mantenerse sano o combatir las enfermedades crónicas

¿No tiene tiempo para mirar un episodio completo? No se preocupe, la BBC nos propone unos breves extractos como, por ejemplo, “Foods to boost your beneficial bugs (Alimentos para estimular las bacterias beneficiosas)”, sobre alimentación y salud intestinal, en el que Tim Spector, profesor de epidemiología genética y director del proyecto British Gut, explica la influencia de la dieta en el mantenimiento de una microbiota saludable. Nos ofrece además una lista de alimentos que contribuyen a estimular y mantener la diversidad microbiana del intestino, como los probióticos o los alimentos fermentados.

Otro extracto, “How do bugs in early life colonise us? (¿Como nos colonizan las bacterias a edad temprana?) se centra en una cuestión en la que los nuevos hallazgos tienden a modificar la percepción de los investigadores. ¿Sabía que ciertas bacterias de la madre, ya en la placenta, empiezan a colonizar al bebé incluso antes de su nacimiento?

También se incluyen entrevistas que invitan a la reflexión, como la de John Cryan del APB Microbiome Centre en Cork (Irlanda), quien explica el papel de los microbios en los comportamientos sociales, es decir lo que conocemos como eje intestino-cerebro.

Los tres episodios van acompañados de artículos (algunos se encuentran disponibles aquí y aquí). Intervienen, asimismo, científicos de la talla de Ruth Ley, directora del departamento de Ciencia del Microbioma en el Instituto Max Planck, en Alemania y el Prof. Rob Knight, de la Universidad de California, en San Diego, quienes comparten la certeza de que “somos aproximadamente 43% humanos”.

Leer en GMFH Editing Team