Publicado en 4º ESO, Genética, Información y manipulación genética, Nutrición, Recursos

Los científicos se rebelan contra la ley europea de transgénicos

Miles de investigadores exigen a la UE que elimine los obstáculos a la edición genética para crear frutas y verduras más nutritivas y resistentes al cambio climático

Las verduras del futuro crecen en un invernadero de Valencia. Hay tomates que no producen sustancias alérgicas y otros cuyos genes se han modificado para que el tomate vuelva a saber a tomate. En breve puede sumarse otra variedad capaz de aguantar olas de calor que en condiciones normales pueden arruinar cosechas enteras en el sur de España. El creador de este huerto experimental es el científico Antonio Granell. Como muchos otros investigadores europeos en su campo, este químico afronta con preocupación una realidad que no llega a digerir: es probable que ninguna de estas plantas se desarrollen en España, ni en cualquier otro país de Europa, pues la ley lo hace imposible en la práctica.

“No se puede impedir la llegada al mercado de estas nuevas variedades de plantas, como mucho lo que sucederá es que en Europa acabaremos importando estos productos desde fuera”, asegura Granell, que trabaja en el Instituto de Biología Molecular y Celular de Plantas. “En nuestros estudios con tomate hemos podido averiguar que el buen sabor depende de unos 100 genes y que sobre todo está relacionado con la producción de unos 20 compuestos volátiles. Cambiando la expresión de unos cinco genes podemos modular el tono del sabor del tomate y potenciarlo”, resalta.

Para lograrlo Granell utiliza la técnica de edición genética CRISPR, que desde su descubrimiento en 2012 ha cambiado para siempre la forma de hacer ciencia en la mayoría de laboratorios de biología de todo el mundo. La técnica permite editar el genoma de cualquier ser vivo con una precisión y facilidad sin precedentes. Gracias a ella se pueden identificar los genes responsables de producir los principales alérgenos que hacen que haya personas que no pueden probar el tomate, las fresas o los melocotones y eliminarlos. También es posible crear variedades de plantas que no dependen de las abejas y otros polinizadores para producir fruto, una ventaja debido al declive global de estos insectos. Estas técnicas también evitarían la pérdida de cosechas de trigo, maíz y otros cultivos en países en desarrollo ocasionadas por las sequías y las pestes gracias a cambios puntuales en su genoma realizados con CRISPR.

Hace unas semanas, científicos de 127 institutos de investigación de toda Europa que agrupan a unos 25.000 científicos exigieron a las autoridades de la UE un cambio urgente de la legislación sobre organismos modificados genéticamente (OMG), los transgénicos. En una carta abierta dirigida al Parlamento Europeo, la Comisión Europea y el Consejo, los científicos alertan de que la actual regulación deja a Europa fuera de juego ante la posibilidad de diseñar nuevas variedades vegetales usando CRISPR para crear “una agricultura sostenible” en el contexto del cambio climático con variedades resistentes a la sequía y que necesitan menos agua y pesticidas. “La capacidad de usar la edición genética es crucial para el bienestar y la seguridad alimentaria de los ciudadanos europeos”, clamaba el texto.

El científico del Instituto de Biología Molecular y Celular de Plantas José Luis Rambla examina una cepa de tomates modificados con CRISPR para no producir alérgenos.
El científico del Instituto de Biología Molecular y Celular de Plantas José Luis Rambla examina una cepa de tomates modificados con CRISPR para no producir alérgenos. IBMP

El año pasado, el Tribunal Europeo de Justicia equiparó las plantas modificadas con CRISPR con los transgénicos convencionales (OMG), una decisión no recurrible. Los transgénicos incluyen variedades vegetales desarrolladas hace más de dos décadas con técnicas más rudimentarias para incluir en su genoma ADN de otra especie. Por ejemplo, el maíz transgénico MON 810, el único autorizado para su cultivo en Europa, lleva un gen de la bacteria B. thuringiensis que le permite sintetizar una proteína tóxica para el taladro, una plaga. La sentencia del tribunal de la UE obliga a que las plantas modificadas con CRISPR, incluso las que no lleven ADN de otra especie, estén sometidas a las mismas reglas que los transgénicos. Esta normativa requiere un proceso de prueba que puede llevar hasta seis años y costar hasta 15 millones de euros, lo que en parte explica que en Europa solo se haya aprobado un cultivo de este tipo.

Los científicos denuncian que la sentencia del tribunal no se basa en argumentos científicos. La legislación de transgénicos, que data de 2001, “ya no refleja correctamente el estado actual del conocimiento científico”, alerta la carta enviada a la UE. Las plantas modificadas con CRISPR que no contienen genes de otras especies son igual o más seguras que las plantas obtenidas por las técnicas de mejora convencionales, argumentan. Una de estas técnicas consiste en aplicar productos químicos o radiación a las semillas para generar numerosas mutaciones en su ADN y quedarse con las que desarrollan mejor sabor, color u otra característica de interés. Estas plantas no son consideradas transgénicas, aunque potencialmente llevan muchas más mutaciones que las plantas modificadas con CRISPR, según reconoce un documento elaborado por el servicio de asesores científicos del Gobierno de la UE, que ha recomendado cambiar la ley del 2001.

Un invernadero en el Centro de Investigación de Agrigenómica, en Barcelona.
Un invernadero en el Centro de Investigación de Agrigenómica, en Barcelona. CRAG

“CRISPR es rápido [permite hacer en dos años lo que antes llevaba unos 12], barato y fácil de usar, por lo que puede democratizar la mejora de plantas. Si lo sometes a la misma legislación que los transgénicos, en la práctica vetas el acceso a esta tecnología, que solo será asequible para las grandes multinacionales”, resalta José Luis Riechmann, director del CRAG.

Esta situación está ocasionando absurdos como el que afronta Damiano Martignago. Este investigador participa en el proyecto Idrica, financiado con dos millones de euros por el Consejo Europeo de Investigación, la élite de la ciencia financiada con fondos públicos de la UE. Su objetivo es desarrollar sorgo resistente a la sequía. “Esta ley no nos permite experimentar con esta nueva variante en el campo, porque el coste de hacerlo se sale de nuestras posibilidades incluso contando con la financiación del ERC”, reconoce Martignago.

Si seguimos así Europa se convertirá en el museo de la agricultura primitiva”

El sorgo se usa en muchos países como pienso animal y esto lleva a otro de los absurdos ocasionados por la reciente sentencia judicial. Muchos países producen cereales transgénicos que se venden como pienso animal en la UE, con lo que probablemente cualquier europeo que haya comido carne ya ha comido transgénicos. Esto no supone ningún riesgo, pues tras 30 años de uso no se ha detectado ni un solo problema de salud asociado a estos productos.

La propia UE ha reconocido que en la práctica será imposible cumplir la ley de transgénicos, que obliga a identificar como tal a estos productos, pues en la práctica es imposible diferenciar, por ejemplo, un tomate convencional de otro editado con CRISPR.

Mientras, EE UU, China, Brasil, Argentina, Australia y otros países han decidido no considerar las plantas modificadas con CRISPR como transgénicos, lo que les da una ventaja. “Está claro que esta situación va a suponer un retroceso científico y comercial para Europa”, explica Francisco Barro, investigador del Instituto de Agricultura Sostenible (CSIC). Barro ha usado CRISPR para crear un trigo sin gluten. “Por ahora hemos conseguido reducir la toxicidad para celiacos en un 85% y esperamos conseguir llegar al 100% en un año”, explica Barro, que asegura que ya hay varias empresas de EE UU interesadas en las patentes de este cultivo.

Los firmantes de la carta confían en que la situación se pueda revertir. Dirk Inze, director científico del Centro de Biología de Sistemas de la Universidad de Gante y principal promotor de la iniciativa, dice que ya recibieron señales positivas del anterior equipo de la Comisión Europea y espera que el entrante pueda elaborar pronto legislación para que se apruebe en el Parlamento. “Estamos muy frustrados de tener una herramienta tan potente y no poder usarla”, reconoce.

En un discurso poco antes del final de su mandato, Vytenis Andriukaitis, comisario europeo Salud y Seguridad Alimentaria y ex cirujano cardiaco, dijo el 21 de junio: “Si seguimos así [Europa] se convertirá en el museo de la agricultura primitiva”.

“Ya hacemos toda nuestra investigación fuera de la UE”

Aún no ha llegado ningún vegetal modificado con CRISPR al mercado, pero los primeros podrían llegar en solo unos años, explica Esteban Alcalde, jefe de asuntos regulatorios de Syngenta, una de las mayores empresas de la industria agrícola que recientemente adquirida por una compañía China. “Todo el trabajo de investigación en edición genética que hacemos ya se hace fuera de la UE, en China y en EE UU”, reconoce. Asaja, la mayor organización de agricultores de España, también está a favor de estas prácticas “siempre y cuando lleven el aval de la Agencia Europea de los Alimentos”, explica Pedro Gallardo, vicepresidente de la organización. La normativa está restando competitividad a los productores europeos frente a países como Brasil o China, que está haciendo una gran apuesta por esta tecnología. “Este año en España se ha perdido el 38% del cultivo de cereal por la sequía y este problema va a ir a más con el cambio climático, necesitamos cultivos adaptados”, resalta. La única oposición a estas variantes viene de organizaciones minoritarias, como la Confédération Paysanne de Francia, que originó el litigio que ocasionó la sentencia del TJUE, a la que apoyan organizaciones ecologistas como Amigos de la Tierra o Greenpeace.

Leer en El País

Publicado en 4º ESO, Estructura y dinámica de la Tierra, Recursos, Volcanes, Terremotos y Tectónica

¿El choque entre placas tectónicas causa siempre cordilleras?

Es posible que en las etapas tempranas de nuestro planeta no existieran relieves montañosos como los que observamos hoy

Cuando hay colisión entre las placas, sí se forman siempre cordilleras. Pero la interacción entre las placas puede ser de otro tipo además de la colisión o choque. Aunque para entender lo que ocurre entre ellas es mejor que empecemos por explicar lo que son las placas. Eso que en geología llamamos placas tectónicas son las piezas en las que se divide la capa más externa y rígida de nuestro planeta. Esa capa externa, rocosa, se llama litosfera y está formada por la corteza y la parte superior del manto que se encuentra debajo. La litosfera de nuestro planeta tiene un grosor variado según sea oceánica o continental. Las regiones emergidas de la superficie terrestre corresponden a las áreas con litosfera continental que es más gruesa, hasta 150 kilómetros o más. Mientras que la litosfera oceánica es más delgada y más densa, por eso está sumergida. Esta litosfera terrestre está rota en piezas, las llamadas placas tectónicas, que están en continuo movimiento unas respecto a otras y forman una especie de puzle. Es en los bordes de esas piezas en movimiento donde se forman las cordilleras, se produce la mayor parte de los terremotos más grandes y las alineaciones de volcanes activos.

Las piezas que forman ese puzle en la superficie son siete grandes placas que pueden estar constituidas por litosfera oceánica o continental o por trozos de ambas. También hay docenas de otras placas más pequeñas que acomodan los movimientos de las grandes. Las placas pequeñas se suelen mover más deprisa que las grandes, y todos esos movimientos es lo que denominamos tectónica de placas. Existen tres tipos principales de movimiento relativo en los bordes entre las placas: la convergencia, las dos placas se aproximan; la divergencia, las placas se separan; y la transcurrencia cuando se deslizan una al lado de otra.

La convergencia es, por ejemplo, el caso de la cordillera del Himalaya, donde chocan frontalmente dos masas continentales que han generado las montañas más altas de nuestro planeta. También nuestra cordillera de los Pirineos, aunque es mucho más pequeña, se ha generado por el mismo proceso. Si la convergencia ocurre en un límite entre litosferas oceánicas o una oceánica y otra continental, lo que ocurre es que una de ellas, siempre la oceánica, se mete bajo la otra. A esta acción la llamamos subducción y suele provocar la formación de volcanes. Eso es lo que ocurre en el llamado arco de fuego del Pacífico, donde se generan los arcos de islas. Cuando la subducción se debe a la convergencia entre una masa continental y una oceánica, como pasa en el margen pacífico de América del Sur, entonces se forma una cordillera de montañas y volcanes como la de Los Andes.

En los límites divergentes, las placas se separan una de la otra y en el hueco que se origina por esa separación el manto sale hacia la superficie, empieza a solidificar y cuando se consolida crea nueva corteza oceánica que rellena la grieta. También se forman en este caso cordilleras, con un valle pronunciado que marca la grieta en el medio. Un ejemplo es la dorsal Atlántica que forma una alineación de montañas de miles de kilómetros de longitud de sur a norte y está sumergida en el medio de ese océano. Esa separación que ocurre en la dorsal atlántica hace que las costas de los continentes del este se alejen de las costas de los del oeste. La velocidad de la separación depende de las zonas, pero puede alcanzar un par de centímetros al año que es aproximadamente la velocidad a la que crecen nuestras uñas.

El tercer tipo de movimiento relativo en los bordes de placas se da cuando se mueven en paralelo, deslizándose una al lado de la otra. Ese deslizamiento paralelo puede ser en sentido contrario o en el mismo sentido pero a distinta velocidad y también suele generar alineaciones de montañas. Un ejemplo de límite transcurrente entre dos masas continentales es la famosa falla de San Andrés, en California, causante de terremotos de gran magnitud. Los límites transcurrentes también ocurren en el fondo de los océanos entre dos litosferas oceánicas.

Los movimientos de las placas y la formación de montañas como las que vemos hoy son procesos que existen desde hace unos mil millones de años. Para que existan esas placas lo primero que se necesitó fue que la corteza de la Tierra se enfriara y se solidificara y por tanto, es posible que en las etapas tempranas de nuestro planeta desde su formación hace unos 4.500 millones de años no existieran placas ni relieves montañosos como los que observamos hoy.

Joaquina Álvarez Marrón es doctora en Geología, jefa del departamento de Estructura y Dinámica de la Tierra y Cristalografía del Instituto de Ciencias de la Tierra Jaume Almera del CSIC

Leer en El País

Publicado en 4º ESO, Recursos

4t Biologia i Geologia

GEOLOGIA (1a AVALUACIÓ)

A-  PRESENTACIONS UTILITZADES A CLASSE

  1. Tectònica de Plaques 
  2. Deformacions : Plecs i falles 
  3. El temps geològic
  4. Història del planeta Terra 

B-  APUNTS I ACTIVITATS  DE CLASSE

  1. Apunts “Mètodes d’estudi i capes de la Terra “
  2. Activitats “Mètodes d’estudi i capes de la Terra “
  3. Apunts  “Tectònica de plaques”
  4. Activitats “Tectònica de plaques”
  5. Quadre resumm límits completat 
  6. Activitats erosió i transport (CB) 
  7. Activitats talls geològics

C-PRACTIQUES LABORATORI 

  1. Estudi de la densitat de la Terra ( guia pràctica)
  2. Introducció a l’estudi de les roques (guia)
  3. Introducció a l’estudi de les roques ( fitxa alumne)
  4. Corrents de convecció (guió de la pràctica)
  5. Corrents de convecció ( informació teòrica)
  6. Les roques ( 5 activitats)
  7. La sedimentació (presentació-power de la pràctica) 
  8. La sedimentació ( disseny d’un experiment)
  9. Colades de lava 
  10. Camp magnètic 

D-ALTRES

  1. Animació sobre el moviment de les plaques 
  2. Document : La dinàmica interna de la Terra ( ARC RECURSOS)
  3.  Pàgina de la NASA amb el desplaçament de les plaques

E- EXÀMENS (curs 18-19)

  1. Continguts examen 1 ( dijous 18 d’octubre) 
  2. CONTINGUTS EXAMEN 1A AVALUACIÓ 

F- VÍDEOS I ANIMACIONS

  1. Animacions i exercicis plaques i estructura Terra  ( materials Lurdes Luengo)

2- MEDI AMBIENT (Impactes) (2a avaluació)

A-  PRESENTACIONS UTILITZADES A CLASSE

  1. Impactes i riscos 
  2. Efecte hivernacle i canvi climàtic 

B- ACTIVITATS DE CLASSE

  1. Calculadora de carboni 

C-PRACTIQUES LABORATORI 

  1. La pluja àcida (guia practica i com fer el treball)
  2. Resultats pluja àcida

2- BIOLOGIA : Biotecnologia ( de la cèl·lula al DNA)
( 2a avaluació )

A-  PRESENTACIONS UTILITZADES A CLASSE

  1.  La cèl·lula unitat de vida (unitat 1 biologia)
  2. ADN i Electroforesi ( identifiquen amb l’ADN)
  3. Els transgènics 
  4. Aplicacions en biotecnologia ( clonació i selecció d’embrions) 
  5. Investiguem la vacuna contra la SIDA ( sortida al Caixaforum de Tga) 

B-  ACTIVITATS DE CLASSE

  1. La cèl·lula i els cromosomes (unitat 1 biologia)(teoria)
  2. Activitat 1 : Cèl·lula i cromosomes 
  3. Ajuda’m a curar el càncer de la Nadia ( treball a INF)
  4. Simulació ( fem un adn recombinant)
  5. Vocabulari bàsic biotecnologia 

C- PRACTIQUES LABORATORI 

  1. Extracció del DNA ( pràctica i activitats ) 
  2. Identificació de proteïnes (Biuret)
  3. Observació dels llevats al micrsocopi
  4. Informació sobre els llevats
  5. Estudi de la fermentació alcohòlica 17-18
  6. Estudi de la fermentació alcohòlica 18-19
  7. Enzims : La catalasa
  8. Enzims : l’amilasa
  9. Estudi de la mosca del vinagre
  10. Els dàfnies surten de marxa
  11. Extracció de pigments (treball complementari)
  12. Extracció de pigments ( informació i fòrmules)

D-ALTRES

  1.  La mitosi ( activitat arc recursos, vídeos)
  2.  Biotecnologia ( documents de treball aula-xplorehealth)
  3. Descobrim el DNA ( entrada del bloc amb presentacions i vídeo) 
  4. Vocabulari bàsic de biotecnologia  

E- VÍDEOS

  1. La biotecnologia a les nostres vides ( vídeo introducció a la biotecnologia )

E- EXÀMENS (curs 16-17)

  1. Guia per a preparar l’examen cèl·lula, nucli, genètica molecular i biotecnologia (2018)

D-ALTRES

  1. Aigües de Reus 


GENÈTICA I EVOLUCIÓ (3a avaluació)

A-  PRESENTACIONS UTILITZADES A CLASSE

  1.  Introducció ( evolució) ( què en sabem del tema ?)
  2. Evolució 
  3. Evolució humana 

B-  DOCUMENTS DE CLASSE

  1. Vocabulari bàsic 
  2. Problemes genètica 18-19
  3. Problemes de genètica (repàs)
  4. ENIGMES 
  5. Apunts d’evolució ( conceptes bàsics i teories)
  6. Activitat amb CAMINÀLCULS (SIMULACIÓ DE L’EVOLUCIÓ)

C-PRACTIQUES LABORATORI 

  1. Extracció de pigments vegetals (resum pràctica)
  2.  Treball complementari ( amb les fòrmules)

D-ALTRES

1- Com es desenvolupa un medicament ? ( Joc Xplorehealt)

Publicado en 2º Bachiller, 4º ESO, Artículos científicos, Biología, Genética, Recursos

Las 5 preguntas más importantes sobre CRISPR/Cas9

La novedosa técnica está revolucionando la ingeniería genética. Pero ¿resultan las tijeras moleculares CRISPR/Cas9 tan ventajosas como prometen?

La técnica de edición genética CRISPR/Cas9 funciona como unas tijeras selectivas que cortan y modifican cualquier secuencia del genoma con una gran precisión y eficacia. Pero ¿resultan siempre fiables? [iStock/vchal]

La ingeniería genética está experimentando un impulso renovador. Una década después del Proyecto del Genoma Humano, que no rindió todos los frutos esperados, ha irrumpido una técnica cuyas posibilidades parecen infinitas. CRISPR/Cas9, unas tijeras moleculares que modifican el ADN en puntos escogidos con una precisión sin precedentes, está generando nuevas esperanzas. La estrategia ya está revolucionando todas las áreas de la ingeniería genética, y se considera indiscutible que sus descubridores serán merecedores de un premio Nobel. No obstante, el método no se halla exento de problemas. Los efectos no deseados que puede provocar, las limitaciones técnicas y las objeciones éticas representan importantes obstáculos de la edición genética.

¿Cómo funciona CRISPR/Cas9?

La técnica de edición genética CRISPR/Cas9 se basa en un complejo sistema inmunitario de las bacterias que les protege contra los virus. Se trata de una inmunidad adquirida, o adaptativa, que «recuerda» las secuencias de ADN de los patógenos de ataques anteriores y corta su ADN en caso de una nueva infección.

Es precisamente esta combinación de reconocimiento y corte la que utiliza la técnica CRISPR/Cas9. En la variante más simple, se inyecta en la célula ARN que codifica una proteína llamada Cas9 y una secuencia de reconocimiento. La célula emplea el ARN para sintetizar la proteína, la cual se pone a trabajar junto con el ARN de reconocimiento añadido: Cas9 corta el ADN de doble cadena exactamente donde el fragmento de ARN asociado le indica que lo haga. Dado que es posible sintetizar artificialmente cualquier secuencia de ARN, tal combinación permite cortar cualquier genoma en cualquier lugar, al menos teóricamente.

Las llamadas secuencias CRISPR, presentes en el material genético de las bacterias, se conocen desde la década de 1980. El microbiólogo Francisco J. M. Mojica, de la Universidad de Alicante, contribuyó en una parte fundamental a su descubrimiento y denominación. La abreviatura significa «repeticiones palindrómicas cortas agrupadas y regularmente espaciadas», es decir, secuencias palindrómicas cortas repetidas que están separadas por otro material genético y que con frecuencia aparecen en el genoma en ubicaciones específicas. Resultó que el material genético que había entre las secuencias repetidas a menudo procedía de virus, lo que permitió deducir que CRISPR correspondía a un sistema que permitía a las bacterias defenderse de ellos.

Más tarde, se observó que todas las bacterias con dicho sistema presentaban, en la vecindad de CRISPR, unos genes asociados que se denominaron cas. Estos constituyen el elemento esencial de la defensa antivírica. El sistema CRISPR de la bacteria «cosecha» ADN vírico e integra partes de él entre las secuencias repetidas del genoma bacteriano. Como resultado, la célula produce ARN complementario del ADN vírico y lo ensambla con proteínas Cas. Si un virus intenta infectar de nuevo la célula con este ADN, el ARN «reconoce» el genoma del virus y, a continuación, las proteínas Cas lo cortan para que no vuelva a causar daños.

El origen de la técnica de edición genética se basa en el descubrimiento de que las proteínas Cas cortan cualquier ADN siempre que se les proporcione un ARN de reconocimiento adecuado, y esto es lo que hace CRISPR/Cas9. Después del corte, se confía en los mecanismos naturales de reparación de la célula, los cuales se ponen en marcha de forma espontánea.

Si en ese momento solo las dos partes del genoma se hallan separadas, interviene un mecanismo de reparación celular que las vuelve a conectar, aunque a menudo resulta impreciso y produce los llamados indeles, pequeños fragmentos de ADN que se insertan o eliminan en el punto de corte y que pueden inutilizar los genes implicados. Sin embargo, cuando el ADN flota libremente en la célula con los dos cabos sueltos, interviene otro sistema más precciso, denominado reparación por recombinación homóloga (HDR), que los vuelve a conectar y da lugar a cambios específicos en el genoma.

¿Cuáles son los problemas éticos?

Los expertos han estado debatiendo desde hace tiempo sobre los problemas éticos fundamentales asociados a la modificación genética en los seres humanos. Pero hasta ahora el debate había sido puramente hipotético, ya que los procedimientos eran demasiado burdos e imprecisos como para poderlos trasladar en serio en ensayos con humanos. Pero la edición genética permite en principio introducir cambios en el genoma con una elevada precisión. De hecho, ya en 2015, varios grupos de trabajo chinos informaron de que, mediante el método CRISPR/Cas9, habían intentado eliminar de embriones humanos ciertas enfermedades hereditarias. Reparar genes que provocan dolencias es actualmente la aplicación más obvia en los humanos, puesto que nadie puede objetar en contra de sus fines terapéuticos.

¿O en realidad sí? Los críticos temen que tales procedimientos hagan posponer aún más la definición de «defecto genético» hasta que todas las variantes genéticas, excepto las más necesarias, se consideren defectuosas y, por tanto, necesiten ser reparadas. El bebé de diseño, hecho a medida, el tema de muchas consideraciones más o menos útiles sobre la ética de las modificaciones en la línea germinal, aparecería así bajo el pretexto de la curación.

Sin embargo, el problema más urgente no son las posibles consecuencias de los bebés de diseño, sino, en primer lugar, las consecuencias que tales experimentos tendrán en vista del conocimiento extraordinariamente incompleto que se tiene de los efectos genéticos reales. Las investigaciones para crear un bebé «a medida» pueden conllevar décadas, pero no está claro si tal espera disuadirá a todo el mundo. Quizás tales experimentos simplemente se prohíban, como sucedió con unos experimentos de 2015 en los que se aumentaba la capacidad infecciosa de ciertos virus.

Por el contrario, la eliminación de enfermedades hereditarias ya se halla en la agenda. En algunos casos, la corrección de un solo un gen, o tal vez un solo alelo, probablemente será factible pronto. La mayoría de los expertos consideran que esta opción es éticamente justificable. Sin embargo, incluso en este caso existe el riesgo de que la intervención pueda tener consecuencias imprevisibles a largo plazo si, por ejemplo, el gen corregido se transmite a los descendientes y tiene en ellos efectos que nadie había previsto. En tiempo reciente, el sorprendente anuncio de un investigador chino de que había ayudado a nacer dos gemelas con el genoma editado para protegerlas del VIH despertó una enorme controversia.

En la actualidad, CRISPR/Cas9 y otros métodos relacionados ya están revolucionando todos los ámbitos en los que pueda tener interés la modificación genética. La edición genética resulta más fácil y más precisa que cualquier otra técnica diseñada hasta ahora. Pero, ante todo, debe quedar claro qué se entiende por un «organismo modificado genéticamente»: ¿lo es aquel con un gen modificado mediante CRISPR/Cas9 en un solo lugar? ¿O este simplemente ha incorporado una nueva variante a su acervo génico natural? ¿Es un cerdo sin sus retrovirus endógenos como cualquier otro cerdo?

Resultará interesante ver la reacción de los consumidores cuando tales organismos ocupen los estantes de los supermercados como productos que se hallan en el umbral entre lo «natural» y lo «artificial». En ese momento, a más tardar, la verdadera cuestión técnica de la definición de ingeniería genética se volverá emocional. Muchas personas no desean ver nada en su plato que esté «modificado genéticamente»; pero para ello será necesario reconocer los organismos modificados, incluso si sus genes cambiados no difieren de las variantes naturales y, por lo tanto, también pueden hibridarse con organismos inalterados. Tal transparencia difícilmente sería posible con el sistema actual, sobre todo por lo que se refiere el ganado.

Análisis de ADN por electroforesis en gel. Las proteínas Cas pueden cortar cualquier ADN siempre y cuando se aporte también el ARN de reconocimiento apropiado. Después, uno debe confiar en los mecanismos naturales de reparación de la célula. [iStock/Bill Oxford]
Análisis de ADN por electroforesis en gel. Las proteínas Cas pueden cortar cualquier ADN siempre y cuando se aporte también el ARN de reconocimiento apropiado. Después, uno debe confiar en los mecanismos naturales de reparación de la célula. [iStock/Bill Oxford]

Las consideraciones éticas en torno a CRISPR/Cas9 abordan también/ el equilibrio entre los beneficios buscados y los riesgos de la técnica, como la posibilidad de modificar lugares no deseados del genoma. Los ecosistemas también pueden verse amenazados cuando se liberan en el medio silvestre mosquitos o productos agrícolas modificados genéticamente. Tampoco está claro cuál es el riesgo de que el material genético modificado salte a otras especies. Por otro lado, es difícil predecir las consecuencias de renunciar a la técnica cuando esta pretende curar una enfermedad. En ese caso, oponerse a la poderosa CRISPR/Cas9, a pesar de sus inconvenientes fundamentales, no resulta menos controvertida.

¿Cuáles son las limitaciones de CRISPR/Cas9?

En su origen biológico, CRISPR/Cas9 es un instrumento de destrucción: una rotura en una doble hebra representa una intervención bastante drástica del genoma y, a menudo, no puede repararse sin dejar un daño permanente. Esta propiedad puede resultar útil cuando se pretende incapacitar un gen mediante los denominados indeles: pares de bases que se eliminan o se añaden y hacen que la sección del genoma resulta ilegible. Desafortunadamente, a veces también se producen indeles cuando se incorpora ADN adicional a través del sistema de reparación HDR.

Si se necesita practicar una modificación genética de alta precisión, como en las terapias génicas, las roturas de doble cadena del sistema CRISPR original son, por lo tanto, un problema fundamental que uno desea evitar. Las nuevas variantes de CRISPR/Cas9, por ejemplo, cortan solo una hebra, lo que reduce notablemente los indeles en lugares no deseados del genoma y mejoran mucho la precisión de la técnica.

Aun así, nunca pueden evitarse del todo los cambios no deseados del sistema CRISPR/Cas9, los que se producen en lugares del genoma distintos del que se pretendía. Estos pueden tener lugar porque la enzima de corte Cas9 funciona incluso si el ARN de reconocimiento difiere de la secuencia de ADN en hasta cinco lugares. Tales errores son extaordinariamente difícíles de identificar después. O puede suceder el efecto contrario en genes que supuestamente han sido inactivados: si bien la mutación deseada se incorpora en el lugar adecuado del genoma, el gen sigue «leyéndose» correctamente.

La actual técnica de CRISPR/Cas9 también presenta otros problemas. Aunque puede cortar con precisión una ubicación definida del genoma, necesita que en la proximidad exista una secuencia de genes específica que no puede seleccionarse a voluntad. Este es el caso en la mayoría de los genomas, si bien no en todos (y, naturalmente, nunca en el que uno está trabajando). Además, la maquinaria CRISPR/Cas es muy voluminosa, por lo que resulta difícil introducirla en las primeras células embrionarias de los mamíferos: el gen cas y el ARN reconocimiento son simplemente demasiado grandes para los «transportadores» genéticos que se emplean habitualmente, los virus que introducen el material genético en la célula de interés. El ARN debe inyectarse directamente, lo que limita la eficacia.

De hecho, uno de los parámetros más importantes de una técnica de edición genética es su eficacia; dicho de otro modo, en qué proporción el genoma objetivo se modifica de la manera deseada. Ninguna de las tijeras genéticas utilizadas hoy en día garantizan que cumplan su misión; de hecho, la probabilidad de que lo hagan es relativamente baja, incluso en algunas de las aplicaciones más prometedoras. CRISPR/Cas9 no participa en realidad en la edición del gen de interés. Esta se produce de forma más o menos aleatoria. En las células madre humanas pluripotentes inducidas, por ejemplo, la eficacia de CRISPR/Cas9 es de entre el 2 y el 5 por ciento. En otros sistemas, como el de los embriones de pez cebra, la probabilidad de una mutación exitosa es a veces superior al 70 por ciento, aunque la terapia génica para las enfermedades hereditarias de los peces no constituyen un mercado muy grande.

¿Cuáles serán las aplicaciones futuras de CRISPR/Cas9?

En la investigación biotecnológica, CRISPR/Cas9 ha alcanzado una excelente posición como herramienta de ingeniería genética. Incluso se ha ido más allá con versiones nuevas que permiten regular de forma específica la actividad de los genes en el laboratorio. Para ello, se utiliza una proteína Cas9 inactivada, que se adhiere solo firmemente a fragmentos concretos de ADN. Si tal proteína se une a un dominio promotor, la actividad del gen correspondiente aumenta. Si, en cambio, bloquea la secuencia del gen en sí, el sector del genoma correspondiente deja de traducirse en ARN. Con la ayuda de diferentes proteínas unidas a sistemas Cas9 inactivos, ahora también es posible explorar los efectos epigenéticos, por ejemplo, marcando mediante fluorescencia la posición espacial de ciertas secuencias. Por medio de enzimas asociadas que escinden o unen grupos metilo o acilo, tales sistemas CRISPR/Cas9 también pueden alterar la epigenética de las células.

Pero, sobre todo, CRISPR/Cas9 se utiliza en la actualidad para crear de forma muy eficaz organismos modificados genéticamente, aquellos en los que un determinado gen se ha modificado, insertado o inactivado a través de una mutación. Tales procedimientos son mucho más antiguos que CRISPR. En 2007, por ejemplo, los inventores de la denominada inactivación (knockout) genética fueron galardonados con el premio Nobel de fisiología o medicina. No obstante, la técnica CRISPR/Cas9 es más rápida, más barata y más versátil que los métodos anteriores. En el laboratorio también puede solucionarse uno de los problemas principales de CRISPR: el tamaño requerido del ARN. En la actualidad, por ejemplo, existen varias razas de ratones que son portadoras de la proteína Cas9 en su propio genoma; tan pronto como llega a la célula una determinada señal molecular, como el ARN de reconocimiento correspondiente, la molécula se mantiene a la espera para alterar el genoma.

Editar genes en embriones para evitar ciertas enfermedades graves sería la aplicación más obvia de CRISPR/Cas9 en los humanos. La principal objeción actual son los efectos no deseados que puede provocar la técnica debido a posibles errores en el corte y en los mecanismos de reparación celular posterior. [iStock/Henrik5000]
Editar genes en embriones para evitar ciertas enfermedades graves sería la aplicación más obvia de CRISPR/Cas9 en los humanos. La principal objeción actual son los efectos no deseados que puede provocar la técnica debido a posibles errores en el corte y en los mecanismos de reparación celular posterior. [iStock/Henrik5000]

También están en curso los primeros organismos modificados cuyo objetivo, más allá de la investigación básica, tiene aplicaciones prácticas. De esta manera, si los planes de los científicos tienen éxito, en el futuro se producirán mejores modelos animales para varias enfermedades humanas, y también se desarrollarán cultivos y animales con ciertas características, como mosquitos Anopheles resistentes a la malaria. Un ejemplo interesante es la eliminación, en del genoma del cerdo, de retrovirus potencialmente peligrosos, un requisito importante previo al plan de generar órganos humanos en animales.

Además, CRISPR/Cas9 ha hecho avanzar la técnica denominada impulso génico (gene drive), un mecanismo mediante el cual se hacen propagar con rapidez ciertos rasgos artificiales en poblaciones de animales silvestres. Ello resulta interesante para el control de mosquitos que transmiten enfermedades graves en algunas regiones. La investigación médica también ha puesto la atención en CRISPR/Cas9 como herramienta para luchar contra virus y bacterias patógenos, con el fin de realizar cortes precisos en el ADN de estos microorganismos e impedir que prosperen. Sin embargo, todavía no está del todo claro cómo transportar el ARN necesario a la ubicación deseada en una enfermedad real.

¿Qué alternativas existen a la técnica CRISPR/Cas9?

Una cosa es segura: a pesar de la sentencia en la disputa de patentes entre Emmanuelle Charpentier y Jennifer Doudna, por un lado, y Feng Zhang, por el otro, la batalla por los beneficios del método CRISPR/Cas9 no ha hecho más que empezar. Debido al enorme potencial de la técnica, las regalías se cuentan en miles de millones. Pero, si se mira en perspectiva, quizá no. Mientras que la Universidad de California todavía está en condiciones de obtener al menos de una parte del pastel, varios grupos de investigación han estado explorando otras opciones a la técnica.

Porque CRISPR/Cas9, como hemos visto, tiene desventajas y limitaciones. La más importante es que las tijeras genéticas solo son, en realidad, adecuadas para realizar un corte en el ADN. Si uno desea incorporar nuevo material genético, debe confiar en la célula. En muchos casos, la técnica no es lo suficientemente eficaz como para modificar varios genes a la vez, como se desea. Además, CRISPR/Cas9 no corta en todos los sitios del genoma.

Por esta razón, los métodos que precedieron a CRISPR/Cas9 no se han abandonado del todo: tanto las TALEN como las nucleasas con dedos de zinc, dos tipos de tijeras genéticas más antiguas, todavía se utilizan en la ingeniería genética. Estos procedimientos son mucho más complicados. Sin embargo, si además de los inconvenientes de CRISPR/Cas9 persiste durante más años la incertidumbre sobre los derechos de licencia, los expertos podrían alejarse de CRISPR/Cas9, al menos en lo que se refiere a la investigación con posibles aplicaciones comerciales.

También continúan las investigaciones sobre otras opciones. En la primavera de 2016, un grupo de investigación chino publicó un trabajo que indicaba que una proteína llamada NgAgo hacía lo mismo que CRISPR/Cas9, incluso mejor. Pero los resultados demostraron ser prematuros. Igual que sucedió con el entusiasmo que despertó una proteína llamada lambda Red, que se le supone la capacidad real de editar genes y que ha sido investigada por Zhang, el pionero de CRISPR, durante 14 años sin mucho éxito.

Lars Fischer

Publicado en Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida

Nuevas pistas para localizar a LUCA, el primer ser vivo de la Tierra

Desde hace décadas, los biólogos tratan de encontrar los restos de nuestro Último Antepasado Común, el “padre” de toda la vida de nuestro planeta. Pero podrían haber estado buscándolo en el lugar equivocado

Todas las criaturas que pueblan la Tierra descienden de un único organismo. Uno que fue el primero, hace miles de millones de años, en estrenar todos los procesos físicos y químicos propios de lo que hoy llamamos «vida». Los científicos le han dado un nombre a este organismo: LUCA, del inglés Last Ultimate Common Ancestor o, en español, el Ultimo Antepasado Común.

La búsqueda de LUCA se ha convertido, desde hace décadas, en una especie de obsesión para los biólogos que estudian el origen de la vida en nuestro planeta. ¿Cómo era? ¿Dónde vivía? ¿Qué tipo de ambientes eran sus preferidos?

Las formas de vida más antiguas halladas en la Tierra tienen una edad de 3.760 millones de años. Pero las características de esos microbios, dotados ya de cierta complejidad y diversidad, hacen pensar que existió una forma de vida anterior, de la que todos descienden, y que esa forma de vida podría ser incluso varios cientos de millones de años más antigua.

Hasta ahora nadie ha conseguido identificar a LUCA. Pero las pistas que nos llevarán hasta él son cada vez más numerosas. No olvidemos que el código genético que LUCA inauguró es universal, esto es, compartido por todos los seres vivos presentes y pasados del planeta. Lo cual quiere decir que las características de LUCA están, en cierto modo, «grabadas» en el interior de nuestros propios genes.

Lo que sabemos sobre LUCA

Ahora, un equipo de investigadores del Instituto Pasteur, en París, ha encontrado una nueva pista sobre LUCA. Una que quizá nos permita, por fin, llegar hasta él. En un estudio recién publicado el biorxiv.org, en efecto, los científicos explican que el antepasado común de toda la vida terrestre prefería, probablemente, los climas moderados, y no el calor abrasador que en aquellos lejanos tiempos debió ser dominante y que muchos biólogos piensan que era el ambiente en el que LUCA se movía. El hallazgo, si se confirma, podría significar que hemos estado buscando a estos primeros organismos en el lugar equivocado.

Sabemos ya que LUCA apareció muy pronto en la historia de la Tierra, por lo menos hace 3.900 millones de años, y que relativamente poco tiempo después se dividió en dos grupos bien diferenciados, bacterias y arqueas, que en la actualidad dan cuenta de la inmensa mayoría de todas las especies vivas. Tuvieron que pasar miles de millones de años más para que aparecieran los primeros organismos pluricelulares, criaturas más complejas y formadas por múltiples células. De los casi 4.000 millones de años de historia de la vida en la Tierra, la inmensa mayor parte estuvo ocupada por estas criaturas unicelulares.

En su artículo, Ryan Catchpole y Patrick Forterre explican cómo han reexaminado toda la evidencia genética que indicaba, hasta ahora, que LUCA se adaptó a vivir en un ambiente de calor extremo. Y han llegado a la conclusión de que gran parte del trabajo científico anterior podría haber estado basándose en el rastreo erróneo de un gen clave, lo que alteró nuestra comprensión sobre el tipo de hábitat en en que LUCA prosperó.

Estanques a hasta 100ºC

Muchos biólogos, en efecto, han argumentado que LUCA vivía en lugares extremadamente calientes, como los estanques geotérmicos, donde las temperaturas superan ampliamente los 50, o incluso los 100 grados. Como ejemplo, esos investigadores señalan a muchas especies de arqueas actuales que viven y prosperan en ambientes de ese tipo. los organismos capaces de vivir en ambientes por encima de los 50 grados se denominan «termófilos», y los pocos conocidos capaces de sobrevivir por encima de los 80 grados reciben el nombre de «hipertermófilos».

¿A cuál de los dos tipos perteneció LUCA? El estudio de su genoma podría proporcionar piestas sobre la categoría a la que pertenece. Pero hasta ahora no se ha encontrado ni un solo ejemplar de este organismo. Sin embargo, en un magnífico estudio de 2016, un equipo de biólogos dirigido por Bill Martin, de la Universidad alemana de Düsseldorf, localizó genes universales en los genomas de algunos de los organismos más antiguos conocidos, genes que con toda probabilidad también estuvieron presentes en LUCA.

El equipo de Martin localizó 355 de estos genes. Entre ellos, uno que tiene la misión de codificar una proteína llamada girasa inversa, esencial para los hipertermófilos. Y aunque no está del todo claro qué es exactamente lo que hace este gen, sí que es cierto que se encuentra en los genomas de todos los hipertermófilos e incluso de algunos termófilos. Pero nunca en organismos «mesófilos», los que viven en ambientes a temperaturas inferiores a los 50 grados. Por lo tanto, su más que probable presencia en LUCA sugiere que, como mínimo, nuestro primer antepasado era termófilo.

En busca de genes universales

Pero Catchpole y Forterre no están tan seguros de eso. En su estudio, en efecto, identificaron 376 genes para la girasa inversa procedentes de 276 clases diferentes de arqueas y bacterias, y con ellos construyeron un árbol genealógico para establecer cómo esos genes se habían estado heredando desde la lejana época de LUCA. Para su sorpresa, su árbol no coincidía con los árboles conocidos para bacterias y arqueas, lo que sugiere fuertemente que el gen de la girasa inversa no era «original», sino que se había transferido después, y repetidamente, entre las varias especies.

Para los investigadores, esto significa que el gen no estaba presente en LUCA, sino que surgió más tarde, en un organismo posterior. Y si LUCA carecía del gen de la girasa inversa, no pudo haber sido un termófilo, amante del calor, ni mucho menos un hipertermófilo.

En resumen, Catchpole y Forterre piensan que podríamos haber estado buscando a LUCA en los lugares equivocados. El rastreo de criaturas tan extremadamente antiguas entraña una dificultad enorme, ya que los afloramientos de rocas de la Tierra primitiva son muy escasos. Quizá ahora, cambiando de estrategia, sea finalmente posible localizar a LUCA, nuestro antepasado más lejano, la primera criatura que estrenó la vida en la Tierra.

Leer en ABC

Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

El enigma del origen de la célula moderna

Científicos de Barcelona aclaran uno de los momentos cruciales en la evolución de la vida

Oculta en lo más profundo de cada una de nuestras células, disfrazada como uno más de sus departamentos de gestión e integrada hasta la médula en su lógica metabólica, habita una primitiva bacteria que nadó libre por los océanos del eón Arcaico, hace 2.500 millones de años. Hoy la llamamos mitocondria, y lo que queda de su genoma –el ADN mitocondrial— sirve a menudo para identificar a los criminales y a sus víctimas. Entender cómo aquella bacteria libre se convirtió en nuestra mitocondria es entender el origen de la célula moderna, y el episodio más importante de la evolución desde el inicio de la vida.

Alexandros Pittis y Toni Gabaldón, del Centro de Regulación Genómica de Barcelona (CRG), han husmeado ahora en la noche de los tiempos, remontándose hasta los orígenes de la célula moderna –la célula eucariota, de la que estamos hechos todos los animales, los hongos y las plantas— con los métodos actuales de la biología evolutiva, unos sofisticados algoritmos que comparan los genomas para deducir los árboles genealógicos de sus portadores. Los resultados, que presentan en la revista Nature, son fáciles de resumir: las mitocondrias llegaron tarde a nuestras células. Para entenderlos, sin embargo, tenemos que retrasar el reloj 2.500 millones de años, hasta el suceso esencial de la historia de la vida en la Tierra.

Nuestro planeta tiene 4.500 millones de años, un tercio de la edad del universo, y los primeros microbios (células procariotas, en la jerga, que incluyen bacterias y arqueas) no tardaron mucho en aparecer: hay evidencias fósiles de hace 3.500 millones de años, y el planeta era probablemente un infierno en la etapa anterior. Pese a ello, la gran invención evolutiva de la historia de la vida, la célula eucariota, solo surgió hace 2.000 o 2.500 millones de años.

Entender cómo aquella bacteria libre se convirtió en nuestra mitocondria es entender el origen de la célula moderna, y el episodio más importante de la evolución desde el inicio de la vida

La célula eucariota es un autómata biológico mucho más avanzado que las bacterias y arqueas que la precedieron. Tiene el genoma organizado en cromosomas de compleja estructura y confinado en un núcleo, que le da el nombre “eucariota” (las bacterias y arqueas tienen el ADN suelto, sin un núcleo, y por eso se llaman procariotas). Además, tienen un sofisticado andamiaje, o citoesqueleto, que permite a nuestras neuronas, por ejemplo, formar sus largos axones y dendritas. Y tiene orgánulos (pequeños órganos), como las mitocondrias, que producen y gestionan la energía celular.

Los evolucionistas saben hoy que las mitocondrias provienen de antiguas bacterias, y que nuestro genoma contiene genes de bacterias y de arqueas. La teoría dominante, de hecho, es que la célula eucariota se originó por la fusión de una arquea y una bacteria, y que la mayor parte de los genes de la bacteria se asociaron a los de la arquea para formar el núcleo. Pittis y Gabaldón ha mostrado que no es así.

“Hay teorías para todos los gustos”, dice Gabaldón, “y algunas son muy bonitas, como la de que el núcleo surgió como un mecanismo de defensa contra las mitocondrias”. Pero no son más que teorías, advierte. Los dos científicos del CRG han buscado datos firmes, y han podido refutar la teoría dominante.

“Los genes de las proteínas mitocondriales tienen las ramas más cortas, en los árboles filogenéticos, que los que hace las proteínas del núcleo y de otras estructuras celulares”, dice Gabaldón. “Y el núcleo ya era una combinación de genes de bacterias y arqueas antes de la llegada de las alfa-proteobacterias, las bacterias precursoras de las mitocondrias”. El origen de la célula moderna no fue, por tanto, un suceso único de simbiosis, sino una simbiosis serial.

Hay teorías para todos los gustos, y algunas son muy bonitas, como la de que el núcleo surgió como un mecanismo de defensa contra las mitocondrias

Las proteínas más viejas de la célula eucariota provienen sobre todo de arqueas, según los datos de los investigadores de Barcelona. Se ocupan de las funciones autoalusivas de nuestras células: la replicación del genoma, su transcripción (o copia a ARN, una molécula similar al ADN, pero con una sola hilera de letras en vez de dos) y la traducción de éste al lenguaje de las proteínas, que son las nanomáquinas que ejecutan todas las funciones celulares.

Las proteínas de edad intermedia son de origen bacteriano, pero no de las alfa-proteobacterias que originaron las mitocondrias, sino de otros grupos de bacterias muy distintos. Curiosamente, estas proteínas están hoy, sobre todo, en los sistemas de membranas intracelulares (retículo endoplásmico y aparato de Golgi, llamado así por el gran rival de Ramón y Cajal).

Como toda buena investigación, la de Pittis y Gabaldón plantea más preguntas que respuestas. Una de las mejores es: ¿de qué bacteria salieron esos sistemas membranosos, junto a los genes para fabricar sus proteínas? Gabaldón se muestra cauto: ha visto caer demasiadas teorías bonitas en los últimos 20 años.

Leer en El País

Un fósil millones de años dentro de nuestras células

Nuestro metabolismo ya existía hace 3.000 millones de años, antes que nuestros genes

Recreación de la Tierra durante el eón Arcaico Ampliar foto
Recreación de la Tierra durante el eón Arcaico, en los albores de la vida, de 4.000 a 2.500 millones de años atrás. The Archean World / Peter Sawyer

Los estudiosos del origen de la vida se enfrentan a una paradoja circular (como la del huevo y la gallina) que, probablemente, puede considerarse el más profundo misterio de la biología evolutiva. Toda la vida que conocemos tiene un fundamento doble: la auto-replicación, o capacidad de un organismo para sacar copias de sí mismo, y el metabolismo, la cocina de la célula que fabrica continuamente sus componentes básicos. Hoy están vinculados de forma inextricable, pero ¿cuál surgió primero en la noche de los tiempos? ¿Y de qué servía el uno sin el otro?

Una investigación bioquímica que imita las condiciones de los sedimentos del eón Arcaico (en los albores de la vida en la Tierra, hace de 4.000 a 2.500 millones de años atrás) muestra que dos rutas metabólicas (cadenas de reacciones químicas, o la cocina de la célula) ya funcionaban entonces igual que ahora, dentro de cada una de nuestras células. Tanto en la era Arcaica como hoy mismo, esas rutas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro. Es un fuerte indicio de que el metabolismo es anterior a las enzimas (proteínas con actividad catalítica) que lo ejecutan hoy. Y también, proponen los autores, a los genes que contienen la información para fabricar esas enzimas.

Tanto en la era Arcaica como hoy mismo, las rutas metabólicas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro

Una de las implicaciones más extraordinarias del trabajo de Markus Keller y Markus Ralser, del Centro de Biología de Sistemas de la Universidad de Cambridge, y sus colegas, que se presenta en Science Advances, es que llevamos dentro de cada una de nuestras células un testigo de la Tierra primitiva, como un trozo del pasado remoto: un sistema complejo y autoconsistente que, posiblemente, empezó a funcionar antes de la invención de la primera bacteria del planeta. Más aún: una invención que fundamentó la evolución de la primera bacteria. Un invento tan brillante que 3.000 millones de años de evolución no han podido superar. Da vértigo. Casi da hasta asco.

La máquina del tiempo de Keller y Ralser se basa, de manera paradójica, en la tecnología biológica más avanzada, la metabolómica. Si la genómica es el estudio simultáneo de todos los genes, y la proteómica el de todas las proteínas. La metabolómica lo es de todos los metabolitos, las moléculas simples (como la glucosa, la ribosa o el oxalato) que le sirven a toda célula para cocinar todo el resto de sus componentes, como los carbohidratos, las grasas, las proteínas y los genes.

Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. ampliar foto
Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. MARKUS KELLER

Los científicos de Cambridge se han centrado en dos de las rutas esenciales de ese metabolismo central que ocupa el centro de la cocina celular de todas las especias vivas. Se trata de la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo. Convierten los azúcares como la glucosa (la comida) en energía (la gasolina), y también aportan la materia prima para construir muchos otros componentes celulares.

La vida no podría haber surgido en el universo joven, poco después del Big Bang. Porque del Big Bang solo salieron los elementos más simples, el hidrógeno y el helio, y los sistemas biológicos necesitan átomos más pesados, como el carbono y el nitrógeno, y algunos mucho más pesados, como los metales que catalizan las reacciones esenciales. Entre estos últimos, el más importante durante el eón Arcaico en que evolucionó la vida primitiva era el hierro (concretamente el hierro ferroso, por oposición al hierro férrico, más conocido como óxido en el lenguaje común).

Los científicos de Cambridge se han centrado en la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo

Y es a este hierro (ferroso) al que responden los ciclos metabólicos de los investigadores de Cambridge. El hierro cumplía en aquella noche de los tiempos la función que hoy tienen las enzimas metabólicas, las nanomáquinas de gran complejidad que catalizan hoy esas mismas reacciones. Pero que, como atavismo del pasado remoto, siguen conservando en sus centros activos, o núcleos lógicos, el mismo metal, y en el mismo estado de oxidación (ferroso) que entonces.

Hoy hace falta un gen para fabricar un catalizador (una enzima). Entonces solo hacía falta comerse el hierro del océano circundante. Sí, puede que la vida fuera más fácil en el pasado. Pero también era menos interesante.

Más aún, nuestros procesos metabólicos centrales, los que operan en nuestras neuronas para alimentarlas de energía y materiales de construcción, siguen revelando cierta capacidad de auto-sostenimiento que no depende de las enzimas codificadas por los genes, sino del mero hierro (ferroso) que las antecedió en ese papel.

No hemos cambiado tanto en los últimos 3.000 millones de años. Al menos no tanto como en los últimos 10.

Leer en El País

 

Publicado en Artículos científicos, Genética, Recursos, Reproductor

El fin del sexo reproductivo: llega la técnica que permitirá tener hijos sin la intervención del varón

Una investigación japonesa ha creado células germinales humanas a partir de sangre de mujer, de modo que quienes tengan útero podrán reproducirse sin necesidad de un varón

«En lugar de en una cama, en el asiento trasero de un coche o bajo un letrero de no pisar la hierba, los niños serán concebidos en clínicas». El deseo y el sudor sustituidos por la frialdad del laboratorio y las batas blancas. Así ve un futuro no tan lejano Henry T. Greely, profesor de Derecho de la Universidad de Stanford, experto en bioética y autor del libro The End of Sex and the Future of Human Reproduction (2016).

¿El fin del sexo con fines reproductivos? Probablemente, sí.

El polémico caso del científico chino He Jiankui y sus presuntos bebés modificados genéticamente ha vuelto a poner sobre la mesa el estado de estas prácticas en todo el mundo. Aunque haya detenido sus experimentos, todavía en entredicho, la noticia ha coincidido en el tiempo con la intención del gobierno japónés de aprobar, a principios de 2019, un borrador de ley elaborado por expertos que no sólo permitirá la edición genética en embriones con fines científicos (no destinados a la reproducción), sino que la incentivará.

Japón no pretende seguir los pasos de China, Reino Unido y EEUU, países en los que está permitida la manipulación genética de embriones con fines científicos, previa autorización por parte de diversos comités, sino adelantarlos por la derecha. Si finalmente sale adelante en el parlamento japonés, la ley plantea que los investigadores no necesitarán la aprobación gubernamental para llevar a cabo modificaciones en el ADN embrionario.

La polvareda mediática por el caso Jiankui ha eclipsado otra investigación, también japonesa, que plantea una revolución en la reproducción asistida que evita la edición genética. El avance, publicado en la revista Science en septiembre, lo ha realizado un equipo liderado por el biólogo Mitinori Saitou, que ha conseguido crear células germinales humanas, el estadio anterior a un óvulo, a partir de células de la sangre de una mujer.

Todavía no se ha llegado a obtener un óvulo maduro, preparado para ser fertilizado in vitro, pero hay otros ensayos clínicos con ratones que sí han logrado células reproductoras completas. El resultado es una adorable camada de pequeños ratoncitos provenientes de células de la cola de dos ratones adultos. Lo que plantea la gametogénesis in vitro, que así se llama el proceso, es llevar la magia de la reproducción a una placa de Petri sin donación de óvulos ni de esperma.

Uno de los escenarios más extremos, si finalmente la gametogénesis in vitro llega a convertirse en una realidad, es el de un planeta en el que el hombre ya no sea necesario para la reproducción. Si ambos gametos, masculino y femenino, pueden ser obtenidos a partir de células de la piel o de la sangre, el género masculino en su totalidad sería prescindible. Lo que sigue siendo indispensable para la reproducción humana es la implantación del embrión y el útero de la mujer… de momento. Un útero artificial para ayudar al desarrollo de niños prematuros ya es una realidad, ¿llegará el día en que pueda gestar un embrión desde el principio? «Es posible», señala Henry T. Greely, «aunque yo diría que es una hipótesis lejana en el tiempo. Este órgano externo podría crearse a partir de células madre y estar conectado a máquinas que le proporcionen oxígeno, nutrientes y sangre con los niveles correctos de hormonas».

Greely lleva años estudiando las posibles alteraciones sociales, legales y éticas de unos avances de semejante magnitud. Lo primero es tener un marco temporal: «Yo diría que pasarán entre 15 y 30 años antes de que se apruebe su uso clínico, ya que garantizar que el proceso sea seguro para los bebés resultantes requerirá un estudio sustancial».

Carlos Simón, catedrático de Obstetricia y Ginecología de la Universidad de Valencia y director científico de Igenomix, empresa española pionera en genética reproductiva, se muestra de acuerdo: «Es cuestión de tiempo y de mucho trabajo, comprobaciones y análisis. Estamos hablando de un tema muy delicado, hay que asegurarse de que no haya ninguna posibilidad de que algo salga mal, pero tiene un potencial enorme. La gametogénesis puede abaratar los procesos de fecundación in vitro, porque ya no habría que estar criopreservando o recurrir a donantes. Con hacer una pequeña biopsia de la piel o extraer sangre bastaría»”.

Los posibles beneficiados serían, según Greely, «aquellas parejas que quieren tener hijos con su propia carga genética pero no pueden por enfermedad o problemas congénitos. También es plausible que el proceso pueda invertir el reloj biológico y permitir que mujeres de 45, 50 o 60 años produzcan sus propios óvulos viables». Un tercer uso, todavía por explorar, podría «tratar de convertir las células de la piel de hombres en óvulos y células de la piel de mujeres en esperma». Es decir, que parejas homosexuales puedan tener hijos con carga genética de los dos, o incluso que de las células de una sola persona se obtengan gametos tanto masculinos como femeninos.

Y así llegamos al que ambos consideran como el uso más extendido, el de «parejas fértiles que preferirán usar esta técnica para hacer muchos embriones, digamos 100, y luego usar el diagnóstico genético preimplantacional (DGP) para saber los rasgos genéticos de cualquier hijo resultante y elegir el que prefieran». Y es aquí donde nos topamos con lo que podría parecer una distopía, a medio camino entre Gattaca y Un mundo feliz: saltarse la lotería genética para ofrecer bebés a la carta, seleccionados por sus potenciales características físicas y/o intelectuales.

Para comprender los obstáculos éticos y morales de la gametogénesis in vitro también contamos en este debate a tres bandas con la participación de Federico de Montalvo, presidente del Comité de Bioética de España y miembro del Comité de Bioética de la UNESCO, donde actualmente trabaja en un informe sobre nuevas formas de paternidad y maternidad. «Esto abriría muchas posibilidades, un campo enorme en el terreno de la infertilidad», admite. «Pero también supondría que ya no es necesario el sexo para tener hijos».

La gametogénesis se suma a otras técnicas polémicas, como la donación mitocondrial (reproducción asistida con ADN de tres progenitores) o la gestación subrogada. Los tres plantean cómo la ciencia puede transformar un concepto cultural con miles de años de tradición: que madre no hay más que una (Mater sempre certa est), uno de los hechos biológicos más evidentes desde los inicios de la humanidad. «La reproducción humana y toda la investigación vinculada a ella es una de las áreas que más está cambiando nuestra sociedad, aunque no nos demos cuenta», señala.

El fin, permitir la paternidad de personas que no pueden tener hijos usando para ello sus propias células, puede ser plausible. Pero, ¿cuáles serían los medios para conseguirlo? «El problema con estas cosas no suele estar tanto en el uso principal, que es positivo, sino en los usos secundarios o no previstos. En todo lo que es selección embrionaria, el debate que se plantea es dónde está la frontera entre editar una enfermedad, como el Huntington, y el mejoramiento. ¿Hasta dónde podemos llegar eliminando embriones? ¿De qué objetivo estamos hablando? Si lo que buscamos es una supuesta perfección, entramos en terreno peligroso». Esta técnica abriría la puerta a casos extremos, como señaló el experto en bioética Ronald Green en la NPR: «Una mujer que quiera tener un hijo con George Clooney podría recurrir al peluquero del actor para comprarle sus folículos. Éste podría incluso venderlos online. De pronto podríamos tener una progenie muy numerosa de descendientes de George Clooney sin su consentimiento».

Hacen falta más George Clooneys en el mundo, qué duda cabe, pero probablemente a él no le haría ni puñetera gracia.

Y aquí es donde entraría en juego un desafiante marco legal especialmente complejo, todavía por desarrollar, en el que la eugenesia sobrevuela peligrosamente. «Esta técnica nos ofrecería muchas alternativas, pero la gente transforma automáticamente esas posibilidades en derechos. Y eso depende, porque afecta a terceros y a una herencia genética. Ahí está el gran dilema», concluye.

En el mejor de los casos, la gametogénesis in vitro ahorrará a miles de mujeres el sufrimiento de someterse a carísimos y no siempre exitosos tratamientos, prevendrá enfermedades, reducirá costes de atención sanitaria y dará a las familias no tradicionales nuevas oportun idades de tener hijos. En el peor, aumentará las diferencias entre países ricos y pobres, hará disminuir aún más la tasa de adopción, desincentivará la investigación de enfermedades raras y promoverá un nuevo tipo de gestación subrogada.

De momento, en España este tipo de prácticas serían ilegales, ya que la Ley de Reproducción Asistida de 2006, la Ley de Investigación Biomédica de 2007 y el Convenio de Oviedo firmado en 1997 prohíben expresamente que los embriones humanos sean usados en investigación. Pero, como todo lo relativo a la ciencia, es sólo cuestión de tiempo y muchas pruebas. La fecundación in vitro se consideraba hace 40 años como algo contra natura y hasta peligroso para el futuro de la raza humana. Hoy, España es líder europeo en reproducción asistida.

Carlos Simón espera que no tardemos mucho en dar el paso definitivo, siempre desde el rigor científico, porque «lo que ahora ocurre es que Dios o la naturaleza, me da igual en lo que creas, actúa de manera aleatoria en muchos casos, lo que supone que siguen naciendo niños con cardiopatías severas, malformaciones o enfermedades incurables. Estas técnicas ayudarían a evitar este tipo de casos».

Greely califica como imposible que «estos procesos se usen para hacer superbebés o X-Men, porque no conocemos las secuencias de ADN de los superpoderes y, probablemente, nunca lo haremos. Si se utilizan, será para convertir variaciones genéticas raras que causan enfermedades en variaciones comunes y seguras».

Un discurso tranquilizador, sin duda. Pero, como ya sabemos por propia experiencia, el mundo nuestro de cada día tiene una obstinada tendencia a acercarse a las distopías de escritores como Aldous Huxley. Todavía está en nuestras manos decidir hacia dónde y hasta dónde llegar.

Leer en El Mundo

Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, Genética, Recursos

Científicos chinos aseguran haber creado los primeros bebés modificados genéticamente

Las niñas, gemelas nacidas hace “varias semanas”, cuentan ahora con una modificación que supuestamente las protege contra el virus del sida, según el genetista He Jiankui

Un científico chino, He Jiankui, y su equipo, afirman haber creado los primeros bebés modificados genéticamente. Los bebés, Lulu y Nana, dos niñas nacidas hace “varias semanas”, se encuentran en perfecto estado de salud, asegura el genetista, He Jiankui, que utilizó la técnica de edición de genes conocida como CRISPR para mutar un gen y hacer a las pequeñas resistentes contra el virus causante del sida.

La polémica afirmación de He, investigador de la SUSTech (Southern University of Science and Technology of China) en Shenzhen, no ha podido ser contrastada. La investigación no se ha publicado en ninguna revista científica especializada, donde debería haberse sometido al análisis de otros expertos. Y las autoridades científicas de Shenzhen, según el periódico Beijing News, afirman que nunca recibieron la solicitud de permiso necesaria para llevar a cabo la prueba, por lo que han abierto una investigación.

La propia SUSTech se ha declarado “profundamente conmocionada” por este anuncio y ha precisado que He se encuentra en excedencia desde febrero. Su investigación no se comunicó a la Universidad ni a su Departamento, el de Biología, que “desconocían este proyecto de investigación y su naturaleza”, ha indicado el centro académico en un comunicado. El Comité Académico del departamento “cree que la conducta del doctor He Jiankui al usar CRISPR/Cas9 para editar embriones humanos ha violado gravemente la ética y los códigos de conducta académicos”.

La Universidad establecerá un comité independiente para investigar este incidente y dará a conocer sus resultados al público, señala el comunicado.

ASÍ FUNCIONA LA TÉCNICA CRISPR DE MODIFICACIÓN GENÉTICA DEL ADN

CRISPRFuente: Elaboración propia. DAVID ALAMEDA – EL PAÍS

En un vídeo colgado en YouTube, un sonriente He explica desde un laboratorio que “dos encantadoras pequeñas gemelas chinas, Lulu y Nana, han nacido en las últimas semanas en excelente estado de salud, para alegría de su madre, Grace, y de su papá, Mark”. El padre, precisa He, es portador del virus de inmunodeficiencia humana (VIH), causante del sida, y nunca pensó que podría procrear.

Según cuenta el experto, que se encuentra esta semana en Hong Kong para participar en unas jornadas sobre la ética de la manipulación genética, las niñas fueron concebidas mediante inseminación artificial. Tras la fecundación, el equipo científico inyectó reactivos CRISPR, una especie de tijeras moleculares de precisión, en el embrión para inactivar el gen CCR5. El fin era modificar el gen que el virus utiliza como puerta para introducirse en el sistema inmunológico humano.

“Si es cierto, este experimento es monstruoso. Los embriones estaban sanos, sin enfermedades conocidas. La edición genética en sí misma es experimental y todavía está asociada con mutaciones no buscadas, capaces de causar problemas genéticos en etapas tempranas y más tardías de la vida, incluido el desarrollo de cáncer” afirma Julian Savulescu, profesor de la Universidad de Oxford

A lo largo del desarrollo de los embriones, primero en laboratorio y después implantados en el útero de su madre, los expertos comprobaron varias veces, secuenciando el código genético de las criaturas, que todo se desarrollaba como debía y las niñas no presentaban más mutaciones que la prevista. “Ningún otro gen presentó cambios”, asegura He. La comprobación volvió a repetirse tras el nacimiento, anunciado originalmente en una entrevista en exclusiva con la agencia AP y en un artículo en la revista MIT Technology Review.

Según declara a AP, los padres de Lulu y Nana no son los únicos que se han sometido a sus pruebas. Otras seis parejas, donde el varón es seropositivo, también han aceptado el programa, lo que abre la posibilidad de que las dos niñas no sean las únicas modificadas genéticamente.

El genetista, formado en Estados Unidos y retornado a China como parte de un programa para atraer a los talentos educados en el exterior, asegura que es consciente de la polémica que su iniciativa va a despertar. Pero, asegura, no le parece que presente problemas éticos. Lo único que ha hecho, dice, es “abrir una igualdad de oportunidades para tener familias sanas”.

La universidad se ha declarado “profundamente conmocionada” por este anuncio y ha precisado que He se encuentra en excedencia desde febrero

Y las críticas ya han empezado a llover. La prueba hubiera sido imposible bajo la legislación estadounidense e ilegal bajo las normas europeas. Pero en China las regulaciones no son tan estrictas. Este país ya fue el primero en modificar genes de embriones humanos (no viables) y de monos con CRISPR. Una directiva ministerial de 2003 prohíbe la implantación para embarazo de embriones humanos modificados genéticamente, pero es solo una directiva, no una ley.

El profesor Julian Savulescu, director del Centro Uehiro de Ética Práctica de la Universidad de Oxford, asegura a la agencia Science Media Centre que “si es cierto, este experimento es monstruoso”. “Los embriones estaban sanos, sin enfermedades conocidas. La edición genética en sí misma es experimental y todavía está asociada con mutaciones no buscadas, capaces de causar problemas genéticos en etapas tempranas y más tardías de la vida, incluido el desarrollo de cáncer”. El experto también recuerda que ya existen maneras mucho más efectivas de prevenir el sida, incluido el sexo con protección, e incluso si se contrae el síndrome, hoy día existen tratamientos efectivos. “Este experimento expone a niños normales y sanos a riesgos de la edición genética a cambio de ningún beneficio necesario real”.

Según Savulescu, el experimento “contradice décadas de consenso ético y directrices sobre la protección de los participantes humanos en pruebas de investigación”. Los bebés resultantes de las pruebas de He “se están usando como cobayas genéticas. Eso es una ruleta rusa genética”.

He, por su parte, recuerda las críticas que llovieron en torno al nacimiento de Louise Brown, la primera niña concebida mediante fertilización in vitro (FIV). Su técnica, sostiene, es “otro avance de la FIV” que solo se aplicará a un reducido número de familias afectadas por una enfermedad.

En esta imagen tomada en octubre, dos investigadores del laboratorio de He Jiankui. 
En esta imagen tomada en octubre, dos investigadores del laboratorio de He Jiankui. Mark Schiefelbein AP

“No se trata de crear bebés de diseño, solo un niño sano”, asegura. No busca “mejorar la inteligencia, cambiar el color de ojos, la apariencia ni nada similar. No se trata de eso”. Según He, su método “puede ser la única manera de curar alguna enfermedad”.

“Entiendo que mi trabajo será controvertido, pero creo que las familias necesitan esta tecnología, y estoy dispuesto a aceptar las críticas”, señala He, que destaca que él mismo es padre de dos hijas. “No puedo pensar en un regalo más sano ni más bello para la sociedad que dar a una pareja la oportunidad de empezar una familia llena de amor”.

En la página web de su laboratorio, He asegura que su equipo y él han trabajado “durante varios años” editando los genomas de ratones, monos y embriones humanos inviables. En esa página incluye traducciones al inglés de los formularios para pedir el consentimiento de las parejas voluntarias que participan en el experimento, así como el permiso del comité ético del Hospital HarMoniCare de Mujeres y Niños en Shenzhen. “Estamos muy interesados en implicarnos con comunidades de pacientes y reguladores para debatir cómo definir, dirigir y restringir el uso ético de la cirugía genética en etapas tempranas de la vida”.

“No usamos la edición genética para eliminar enfermedades en humanos porque todavía no sabemos hacerlo suficientemente bien”, explicaba recientemente en un artículo en EL PAÍS a la investigadora Susana Balcells. “Para hacer esas modificaciones genéticas, es decir, que las personas puedan ir a su consulta de reproducción asistida y pedir que les hagan una intervención genética para tener hijos sin enfermedades, aún no tenemos los conocimientos que lo hagan de forma suficientemente eficaz y suficientemente segura”, añadía.

En Pekín, el profesor de genética del desarrollo José Pastor, director de laboratorio en la Universidad Tsinghua -una de las más prestigiosas de China- , señalaba que “el primer problema ético es el de editar la línea germinal, los bebés de diseño. A los occidentales nos parece como poco socialmente peligroso… Es algo sobre lo que los científicos tienen una moratoria mundial, pero que iba a acabar pasando de todas formas, por lo menos dentro de ciertos parámetros, y para los chinos puede que no suponga un dilema moral tan grande. El segundo problema, sobre el que no hay opiniones o diferencias culturales que valgan, son los enormes riesgos para los recién nacidos, que es algo que escandaliza también a los biólogos chinos”.

Los científicos chinos también han arremetido contra el experimento de He. En un comunicado firmado por 122 expertos, se reclama una investigación sobre el asunto, que tachan de “locura”. “Esta tecnología podría haberse probado desde hace mucho tiempo, pero los biólogos no lo hacen ni quieren hacerlo por la incertidumbre de provocar mutaciones no buscadas, otros graves riesgos y problemas éticos”, sostienen. La prueba, según estos expertos, “representa un duro golpe a la reputación mundial y el desarrollo de la investigación biomédica en China. También es extremadamente injusta contra la inmensa mayoría de académicos chinos que se esfuerzan en sus investigaciones científicas y en la innovación, y respetan las líneas éticas”.

Intereses comerciales

“Hay que mantener el escepticismo y asumir que todavía no sabemos si esto que nos cuentan ha ocurrido”, opina por su parte Lluís Montoliu, un investigador del Centro Nacional de Biotecnología que utiliza la técnica CRISPR para crear ratones con enfermedades raras similares a las humanas. “Parece más un anuncio de algunas de las empresas de este investigador, que tiene compañías y por lo tanto tiene intereses al respecto, más que una comunicación científica”, señala, según informa Manuel Ansede.

Montoliu recuerda que el experimento con las niñas chinas sería absolutamente ilegal en España y en muchos otros países, incluso en aquellos que abogan por una aplicación terapéutica de la edición genética, como EE UU y Reino Unido. “Es una aplicación de mejora genética. No se trata de curar una enfermedad que tengan subyacente o una enfermedad que puedan desarrollar a lo largo de su vida, sino que se trata de prevenir. Estamos mejorando a esa persona”, advierte el experto.

“Estaba claro que tarde o temprano iba a ocurrir, pero no tan temprano. Es demasiado pronto, demasiado arriesgado”, sostiene por su parte Francis Mojica, microbiólogo de la Universidad de Alicante y pionero en el estudio del sistema CRISPR en las bacterias. Para Mojica, es una “paradoja” que “Europa esté considerando que es peligroso consumir alimentos modificados con CRISPR y en China estén engendrando niños” con la técnica. “Es impactante y precipitado”, resume.

“La edición del genoma es una herramienta muy poderosa con grandes beneficios, y todo el mundo en este campo sabe ya que es posible hacerlo, pero eso no lo convierte en aceptable. En esta era del amanecer de las tecnologías genéticas es absolutamente esencial que la aplicación de estas tecnologías tenga una aprobación mucho más amplia”, asegura Paul Freemont,investigador del Imperial College de Londres, a Science Media Centre.

El riesgo de tumores

Daniel Mediavilla

En junio de este año, la revista Nature Medicine publicó dos artículos en los que se señalaban los riesgos asociados a CRISPR, uno liderado por un equipo de la farmacéutica Novartis en Boston (EE UU) y otro por investigadores del Instituto Karolinska sueco. En ambos se señala que la aplicación de CRISPR-Cas9 en células humanas puede facilitar la aparición de tumores. La explicación estaría en la función de una proteína clave en el buen funcionamiento de nuestro organismo.

P53 actúa como un guardián que vigila las roturas que se producen continuamente en el ADN para que las células no crezcan sin control y provoquen tumores. Lo que se hace con CRISPR-Cas9 es, desde el punto de vista de este guardián, una agresión que pone en peligro la estabilidad del genoma, y por eso la proteína dificulta los cambios que se quieren introducir con esta técnica en las células, deshaciendo el cambio o destruyendo la célula. Lo que observaron los investigadores es que si se aplica la edición genética a un grupo de células, las que por algún motivo tienen desactivado el P53 se modifican con más facilidad. Por eso, entre las células reparadas por CRISPR habría muchas con el p53 estropeado y si se trasplantasen a un paciente, como se hace en las terapias génicas para enfermedades hereditarias, esas células podrían provocar cáncer.

Los estudios no decían que sea imposible modificar una célula con P53 funcional pero sí indican que el proceso es menos eficiente de lo esperado y que una vez corregido el defecto genético habría que aplicar nuevas pruebas para comprobar que el guardián del genoma sigue activo.

Leer en El País
Publicado en Educación, Neuroendocrino, Recursos, Tutoría

Neurociencia y educación: 12 principios que todo educador debería conocer

Para garantizar aprendizajes verdaderamente significativos, es indispensable entender qué sucede en el cerebro de una persona cuando está aprendiendo. Por ello, aquí te contamos 12 principios que todo educador debe conocer.

En su libro, Neurociencias y educación: Guía práctica para padres y docentes, Marcela Garrido Díaz intenta responder la necesidad que tienen los padres y los educadores de entender cómo funciona el cerebro. En cuatro capítulos, la autora habla de los componentes del cerebro, de los procesos de maduración, del desarrollo armónico del cerebro y de algunos factores que inciden en dicho desarrollo. Además, Garrido expone ejemplos para relevar la neurociencia como un elemento indispensable de la educación y explica, en términos simple, qué es el aprendizaje y cómo ocurre éste.

Lo primero que explica la autora es que el aprendizaje es un procesos en el cual se adquieren y se modifican algunos conocimientos, valores, conductas, destrezas, habilidades y comportamientos, como resultado de una instrucción formal o informal, del estudio, la experiencia, el razonamiento y la formación. Aunque no se sabe mucho de la neurofisiología del aprendizaje, menciona Garrido, sí existen algunos datos claves que permiten entender cómo y cuándo sucede. Por ejemplo, se sabe que el cerebro está disponible para el aprendizaje en las primeras etapas de vida, momento en el cual, las neuronas se multiplican a gran velocidad. Se sabe que el aprendizaje está relacionado con la modificación de conexiones sinápticas. Sobre esto hay otros principios acerca del aprendizaje del cerebro que la autora explica en 12 puntos esenciales:

1. El cerebro es un complejo sistema adaptativo

Una de las características más poderosas del cerebro es la capacidad que tiene de adaptarse y funcionar en muchos niveles y de forma simultánea. De forma continua e interactiva, en el cerebro operan cosas como pensamientos, emociones, imaginación, predisposiciones y fisiología.

2. El cerebro es social

En los primeros años de vida, el cerebro está en su estado más flexible y receptivo. Éste se configura a medida que interactuamos con el entorno y las personas. Esto quiere decir que el aprendizaje que ocurre en el cerebro está profundamente influido por la naturaleza de las relaciones sociales.

3. La búsqueda de significado es innata

Buscar significado es encontrar sentido a nuestras experiencias. Esta búsqueda se orienta en la supervivencia y es algo básico para el cerebro. Además está dirigida por nuestras metas y valores, y se ordena desde la necesidad de alimentarnos y encontrar seguridad, hasta la exploración de nuestro potencial.

4. La búsqueda de significado ocurre a través de “pautas”

Las pautas son mapas esquemáticos y también categorías innatas y adquiridas. El cerebro necesita y registra automáticamente lo familiar, y al mismo tiempo, busca y responde a nuevos estímulos. Éste intenta discernir y entender pautas a medida que ocurren y le da forma a nuevas pautas que son únicas y propias. Además, se resiste a que le impongan cosas sin significado, es decir, cosas aisladas que no importan para quien está aprendiendo. Esto quiere decir que, en una educación efectiva, se debe dar la oportunidad a los alumnos de que sus cerebros formulen sus propias pautas de entendimiento.

5. Las emociones son críticas para la elaboración de pautas

Lo que aprendemos es influido y organizado por las emociones y otros elemento mentales que implican expectativas, prejuicios, autoestima e interacción social. Estas emociones se moldean unos a otros y no se separan y por esto, un clima emocional apropiado, es fundamental para el aprendizaje.

6. El cerebro percibe simultáneamente

En una persona sana, los dos hemisferios cerebral interactúan en cada actividad. Garrido explica que es importante reconocer esto para introducir proyectos o ideas que sean “globales” desde el comienzo. Es decir que permitan que ambos hemisferios sigan interactuando.

7. El aprendizaje implica dos tipos de atención

Las dos atenciones son: la localizada y la periférica. Esto quiere decir que el cerebro absorbe información de lo que es consciente y de lo que está más allá de su foco de atención inmediato. Es, por lo tanto, fundamental que se preste atención a todos los factores de un entorno educativo.

8. El aprendizaje implica procesos conscientes e inconscientes

Gran parte del aprendizaje ocurre de una manera inconsciente. Esto significa que la comprensión de muchas cosas puede darse horas, semanas o meses más tarde después de una clase. Es clave entonces, que los educadores faciliten ese procesamiento inconsciente que llega después, convirtiéndolo en algo visible.

9. Tenemos al menos, dos formas de organizar la memoria

La primera forma es un conjunto de sistemas que permiten recordar información relativamente no relacionada –motivada por un premio y un castigo–, y la segunda es una memoria espacial/autobiográfica que no necesita ensayo y error y permite el recuerdo de experiencias. El aprendizaje significativo ocurre a través de la combinación de ambos enfoques de memoria.

10. El aprendizaje es un proceso de desarrollo

El cerebro es “plástico”, esto quiere decir que es moldeado por la experiencia de la persona. Hay secuencias de desarrollo predeterminadas en un niño, incluida la ventana de oportunidades que asientan la estructura básica necesaria para el aprendizaje posterior. Al ser un proceso, el ser humano siempre es capaz de aprender más pues las neuronas continúan haciendo y reforzando conexiones neuronales a lo largo de toda la vida.

11. El aprendizaje complejo se incrementa por el desafío y se inhibe por la amenaza

El cerebro aprende de manera óptima cuando es desafiado en un entorno que estimula el asumir riesgos. Sin embargo, ante una amenaza, se limita, se hace menos flexible. Por eso se debe crear un ambiente relajado con bajas amenazas y altos desafíos.

12. Cada cerebro está organizado de manera única

Todos tenemos el mismo sistema cerebral, sin embargo todos tenemos diferencias que son consecuencia de una herencia genética o muchas veces del entorno. Esas diferencias se expresan en términos de estilos de aprendizaje, talentos e inteligencias.

Estos 12 puntos evidencian que la mente humana no sólo es un músculo, sino un órgano que registra y aprovecha todo lo que experimenta y descubre. Teniendo en cuenta esto, padres y educadores pueden aprovechar dicha información para impulsar experiencias de aprendizaje significativo que tienen un gran impacto a nivel cerebral con el fin de potenciar el aprendizaje de todos y cada uno de ellos.