Publicado en Artículos científicos, Información y manipulación genética, Recursos

Un Hito médico, operan por primera vez la columna de un feto sin sacarlo del útero de su madre.

El King’s College Hospital de Londres se ha convertido en el primer centro del Reino Unido en realizar una cirugía fetoscópica (ojo de la cerradura) en bebés con espina bífida mientras aún se encuentran en el vientre de su madre.

Guiados por ultrasonido, un equipo de neurocirujanos y especialistas en medicina fetal introdujeron una cámara e instrumentos a través de pequeñas incisiones en el estómago de la madre para reparar los orificios en la médula espinal del bebé sin la necesidad de realizar cortes invasivos en el abdomen.

Hasta hace poco, las mujeres que llevaban a un bebé con espina bífida que decidían continuar con su embarazo podían optar por reparar el agujero en la espalda de su bebé después del nacimiento u optar por una cirugía fetal invasiva. Esto implica hacer una incisión grande a lo ancho del abdomen de la mujer durante el embarazo para acceder al útero, que luego se abre para reparar la columna vertebral dañada del bebé. El útero y el abdomen se cierran y el embarazo continúa.

Utilizando el novedoso enfoque mínimamente invasivo, se hace una pequeña incisión en el abdomen de la mujer y se introduce un fetoscopio (un tubo largo y delgado con una luz y una cámara al final) en el útero. Los cirujanos acceden a la médula espinal expuesta que sobresale a través de un orificio en la espalda del bebé y lo libera del tejido circundante para que pueda volver a introducirse en el canal espinal. Se usa un parche especial para luego cubrir la médula espinal y luego el cierre de los músculos y la piel para evitar que el líquido espinal se escape.

El Sr. Bassel Zebian, consultor neurocirujano del Hospital King’s College, quien dirigió la parte de neurocirugía del equipo que llevó a cabo el procedimiento, dijo: «Varios centros de todo el mundo han logrado grandes avances en la reparación fetal abierta en los últimos años y han demostrado el beneficio. de la cirugía fetal para reducir la severidad de la condición y las complicaciones asociadas. El objetivo del enfoque fetoscópico es reducir los riesgos para la madre y los embarazos futuros, a la vez que se asegura un beneficio máximo para el bebé».

La Dra. Marta Santorum-Perez, Consultora en Medicina Fetal, quien dirigió la medicina fetal, parte del equipo agregó: “Solo un puñado de centros en todo el mundo tiene la experiencia necesaria para realizar una cirugía con un fetoscopio. Tuvimos la suerte de entrenar y trabajar estrechamente con la Dra. Denise Lapa Pedreira, Consultora en Medicina Fetal en el Hospital Albert Einstein en Sao Paolo, quien fue pionera en esta técnica».

Sherrie Sharp, de 28 años, de Horsham, en West Sussex, descubrió que su bebé tenía espina bífida después de su exploración de 20 semanas en otro hospital. Sherrie, quien dio a luz a un hijo, Jaxson Nicholas Leonard James Sharp, el sábado de Pascua (20/04/19) fue una de las primeras en hacerse la cirugía pionera en King’s. Por coincidencia, la propia Sherrie se benefició del Departamento de Medicina Fetal en King’s, dirigido por un especialista de renombre mundial, el profesor Kypros Nicolaides, cuando desarrolló una grave anemia en el útero de su madre y recibió transfusiones de sangre que le salvaron la vida a través del abdomen de su madre.

Habiendo tenido experiencia de primera mano en King’s, Sherrie se refirió al Departamento de Medicina Fetal donde le ofrecieron la reparación fetoscópica. Sherrie dijo: “Cuando descubrimos que Jaxson tenía espina bífida, me dieron varias opciones. Sabíamos que queríamos mantener a nuestro bebé y hoy estoy aquí gracias a los especialistas de King’s, así que quería que mi bebé tuviera la misma oportunidad. El procedimiento duró más de tres horas y los especialistas se mostraron satisfechos con el resultado. Estamos encantados con nuestro hermoso niño y, aunque llegó antes de lo esperado, lo está haciendo bien y su espalda está sanando muy bien».

La espina bífida es una condición por la cual la columna vertebral de un bebé no se cierra completamente durante el embarazo dejando un agujero en la espalda y la médula espinal expuesta. Esto causa daño a la médula espinal que resulta en debilidad o parálisis total, así como pérdida de sensibilidad en las piernas, así como disfunción urinaria e intestinal. Muchos bebés con espina bífida también desarrollan problemas con su cerebro, incluida la hidrocefalia (una acumulación de líquido en el cerebro), que puede dañar aún más el cerebro y requiere drenaje.

Se ha demostrado que la cirugía durante el segundo trimestre del embarazo reduce el grado de debilidad en las piernas y mejora la función, además de reducir las posibilidades de desarrollar hidrocefalia.

Fuente: King’s College Hospital.

Leer en Comunidad biológica

Publicado en Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

El origen de la vida en una burbuja de gas

Las primeras moléculas precursoras de la vida podrían haberse producido en las interfases entre líquido y gas de las burbujas atrapadas en el agua de las rocas volcánicas de la primitiva corteza terrestre

Muchos procesos fisicoquímicos tuvieron que darse hasta que nació la vida. En otras palabras, la era de la evolución biológica debió llegar tras una evolución química prebiótica, durante la cual se ensamblaron y seleccionaron las primeras moléculas capaces de replicarse. Así, ante este escenario surge inmediatamente una nueva pregunta:

¿Bajo qué condiciones ambientales podría haber tenido lugar la evolución prebiótica?

De entre las posibilidades, existe una hipótesis discutida y explorada durante mucho tiempo: estas moléculas predecesoras de la vida podrían haber surgido en los pequeños poros de las rocas volcánicas mientras nuestro planeta estaba todavía formándose.

Ahora un equipo internacional de investigadores dirigido por Dieter Braun, profesor de biofísica de sistemas en la Universidad Ludwig-Maximilians de Munich -LMU ha examinado más de cerca las interfases agua-aire que se producen en estos poros, donde las burbujas de gas que se forman espontáneamente sufren una interesante combinación de efectos.

Las moléculas predecesoras de la vida podrían haber surgido en los pequeños poros de las rocas volcánicas

Así, los investigadores descubrieron que estas burbujas podrían haber jugado un papel importante para facilitar las interacciones fisicoquímicas que contribuyeron al origen de la vida. Específicamente, Braun y sus colegas preguntaron si las interfases -periodos de transición- entre los estados líquido y gaseoso de los fluidos atrapados en dichas rocas, podrían haber estimulado los tipos de reacciones químicas que desencadenaron las etapas iniciales de la evolución química prebiótica. Sus hallazgos recogidos en el artículo titulado Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules se publican esta semana en la revista especializada Nature Chemistry.

La vida en una burbuja

El estudio respalda firmemente la idea de que pequeñas burbujas llenas de gas que quedaron atrapadas y reaccionaron con las superficies de los poros en las rocas volcánicas, podrían haber acelerado la formación de las redes químicas que finalmente dieron lugar a las primeras células.

Detectan un ingrediente de la vida alrededor de un grupo de estrellas muy jóvenes

Más información

Detectan un ingrediente de la vida alrededor de un grupo de estrellas muy jóvenes

4

Fotografías

En su investigación, los autores pudieron verificar y caracterizar experimentalmente los efectos facilitadores de las interfases aire-agua en las reacciones químicas relevantes. De este modo, si existe una diferencia de temperatura a lo largo de la superficie una de estas burbujas, el agua tenderá a evaporarse en el lado más cálido y se condensará en el lado más frío, al igual que una gota de lluvia que cae en una ventana corre por la superficie plana del vidrio y eventualmente se evapora .”En principio, este proceso puede repetirse hasta el infinito, ya que el agua realiza ciclos continuos entre la fase gaseosa y la fase líquida”, explica Braun, quien ha descrito el mecanismo y los procesos físicos subyacentes en detalle junto con el estudiante de doctorado Matthias Morasch . “El resultado de este fenómeno cíclico es que las moléculas se acumulan a concentraciones muy altas en el lado más cálido de la burbuja”, añade.

Los procesos necesarios para la formación de biomoléculas se aceleran en la interfase agua-aire

“Comenzamos realizando una serie de mediciones en las velocidades de reacción bajo diversas condiciones, para obtener algunos datos que nos permitieran entender como funciona este proceso”, comenta Morasch. El fenómeno resultó ser sorprendente: incluso las moléculas más pequeñas podrían concentrarse a niveles relativamente altos. “Luego centramos nuestra atención en una amplia gama de procesos físicos y químicos que deben haber desempeñado un papel central en el origen de la vida. Comprobamos que todos ellos se aceleraron notablemente o fueron posibles bajo las condiciones que prevalecen en la interfaz aire-agua”, añade.

Los primeros ladrillos de la vida

Los investigadores de la LMU muestran que los procesos fisicoquímicos que promueven la formación de polímeros se estimulan, o se hacen posibles en primer lugar, por la disponibilidad de una interfaz entre el entorno acuoso y la fase gaseosa, que mejora notablemente las tasas de reacciones químicas y los mecanismos que las catalizan.

“El hallazgo sugiere cómo podrían haberse formado las primeras protocélulas rudimentarias y sus membranas externas”

De hecho, en sus experimentos, las moléculas generadas podrían acumularse a altas concentraciones dentro de las membranas lipídicas cuando los investigadores agregaron los componentes químicos apropiados para la formación de estas segundas. “Las vesículas producidas de esta manera no son perfectas. Sin embargo, el hallazgo sugiere cómo podrían haberse formado las primeras protocélulas rudimentarias y sus membranas externas“, afirma Morasch.

A la búsqueda del aminoácido extraterrestre

Más información

A la búsqueda del aminoácido extraterrestre

“Si este tipo de proceso puede tener lugar en tales vesículas no depende de la naturaleza del gas dentro de la burbuja. Lo importante es que, debido a las diferencias de temperatura, el agua puede evaporarse en un lugar y condensarse en otro”, añade Braun. “Nuestro modelo explicativo permite combinar ambos efectos, lo que mejoraría el efecto de concentración y, por lo tanto, aumentaría la eficiencia de los procesos prebióticos”, sentencia.

Leer en National Geographic

Publicado en 4º ESO, Genética, Información y manipulación genética, Nutrición, Recursos

Los científicos se rebelan contra la ley europea de transgénicos

Miles de investigadores exigen a la UE que elimine los obstáculos a la edición genética para crear frutas y verduras más nutritivas y resistentes al cambio climático

Las verduras del futuro crecen en un invernadero de Valencia. Hay tomates que no producen sustancias alérgicas y otros cuyos genes se han modificado para que el tomate vuelva a saber a tomate. En breve puede sumarse otra variedad capaz de aguantar olas de calor que en condiciones normales pueden arruinar cosechas enteras en el sur de España. El creador de este huerto experimental es el científico Antonio Granell. Como muchos otros investigadores europeos en su campo, este químico afronta con preocupación una realidad que no llega a digerir: es probable que ninguna de estas plantas se desarrollen en España, ni en cualquier otro país de Europa, pues la ley lo hace imposible en la práctica.

“No se puede impedir la llegada al mercado de estas nuevas variedades de plantas, como mucho lo que sucederá es que en Europa acabaremos importando estos productos desde fuera”, asegura Granell, que trabaja en el Instituto de Biología Molecular y Celular de Plantas. “En nuestros estudios con tomate hemos podido averiguar que el buen sabor depende de unos 100 genes y que sobre todo está relacionado con la producción de unos 20 compuestos volátiles. Cambiando la expresión de unos cinco genes podemos modular el tono del sabor del tomate y potenciarlo”, resalta.

Para lograrlo Granell utiliza la técnica de edición genética CRISPR, que desde su descubrimiento en 2012 ha cambiado para siempre la forma de hacer ciencia en la mayoría de laboratorios de biología de todo el mundo. La técnica permite editar el genoma de cualquier ser vivo con una precisión y facilidad sin precedentes. Gracias a ella se pueden identificar los genes responsables de producir los principales alérgenos que hacen que haya personas que no pueden probar el tomate, las fresas o los melocotones y eliminarlos. También es posible crear variedades de plantas que no dependen de las abejas y otros polinizadores para producir fruto, una ventaja debido al declive global de estos insectos. Estas técnicas también evitarían la pérdida de cosechas de trigo, maíz y otros cultivos en países en desarrollo ocasionadas por las sequías y las pestes gracias a cambios puntuales en su genoma realizados con CRISPR.

Hace unas semanas, científicos de 127 institutos de investigación de toda Europa que agrupan a unos 25.000 científicos exigieron a las autoridades de la UE un cambio urgente de la legislación sobre organismos modificados genéticamente (OMG), los transgénicos. En una carta abierta dirigida al Parlamento Europeo, la Comisión Europea y el Consejo, los científicos alertan de que la actual regulación deja a Europa fuera de juego ante la posibilidad de diseñar nuevas variedades vegetales usando CRISPR para crear “una agricultura sostenible” en el contexto del cambio climático con variedades resistentes a la sequía y que necesitan menos agua y pesticidas. “La capacidad de usar la edición genética es crucial para el bienestar y la seguridad alimentaria de los ciudadanos europeos”, clamaba el texto.

El científico del Instituto de Biología Molecular y Celular de Plantas José Luis Rambla examina una cepa de tomates modificados con CRISPR para no producir alérgenos.
El científico del Instituto de Biología Molecular y Celular de Plantas José Luis Rambla examina una cepa de tomates modificados con CRISPR para no producir alérgenos. IBMP

El año pasado, el Tribunal Europeo de Justicia equiparó las plantas modificadas con CRISPR con los transgénicos convencionales (OMG), una decisión no recurrible. Los transgénicos incluyen variedades vegetales desarrolladas hace más de dos décadas con técnicas más rudimentarias para incluir en su genoma ADN de otra especie. Por ejemplo, el maíz transgénico MON 810, el único autorizado para su cultivo en Europa, lleva un gen de la bacteria B. thuringiensis que le permite sintetizar una proteína tóxica para el taladro, una plaga. La sentencia del tribunal de la UE obliga a que las plantas modificadas con CRISPR, incluso las que no lleven ADN de otra especie, estén sometidas a las mismas reglas que los transgénicos. Esta normativa requiere un proceso de prueba que puede llevar hasta seis años y costar hasta 15 millones de euros, lo que en parte explica que en Europa solo se haya aprobado un cultivo de este tipo.

Los científicos denuncian que la sentencia del tribunal no se basa en argumentos científicos. La legislación de transgénicos, que data de 2001, “ya no refleja correctamente el estado actual del conocimiento científico”, alerta la carta enviada a la UE. Las plantas modificadas con CRISPR que no contienen genes de otras especies son igual o más seguras que las plantas obtenidas por las técnicas de mejora convencionales, argumentan. Una de estas técnicas consiste en aplicar productos químicos o radiación a las semillas para generar numerosas mutaciones en su ADN y quedarse con las que desarrollan mejor sabor, color u otra característica de interés. Estas plantas no son consideradas transgénicas, aunque potencialmente llevan muchas más mutaciones que las plantas modificadas con CRISPR, según reconoce un documento elaborado por el servicio de asesores científicos del Gobierno de la UE, que ha recomendado cambiar la ley del 2001.

Un invernadero en el Centro de Investigación de Agrigenómica, en Barcelona.
Un invernadero en el Centro de Investigación de Agrigenómica, en Barcelona. CRAG

“CRISPR es rápido [permite hacer en dos años lo que antes llevaba unos 12], barato y fácil de usar, por lo que puede democratizar la mejora de plantas. Si lo sometes a la misma legislación que los transgénicos, en la práctica vetas el acceso a esta tecnología, que solo será asequible para las grandes multinacionales”, resalta José Luis Riechmann, director del CRAG.

Esta situación está ocasionando absurdos como el que afronta Damiano Martignago. Este investigador participa en el proyecto Idrica, financiado con dos millones de euros por el Consejo Europeo de Investigación, la élite de la ciencia financiada con fondos públicos de la UE. Su objetivo es desarrollar sorgo resistente a la sequía. “Esta ley no nos permite experimentar con esta nueva variante en el campo, porque el coste de hacerlo se sale de nuestras posibilidades incluso contando con la financiación del ERC”, reconoce Martignago.

Si seguimos así Europa se convertirá en el museo de la agricultura primitiva”

El sorgo se usa en muchos países como pienso animal y esto lleva a otro de los absurdos ocasionados por la reciente sentencia judicial. Muchos países producen cereales transgénicos que se venden como pienso animal en la UE, con lo que probablemente cualquier europeo que haya comido carne ya ha comido transgénicos. Esto no supone ningún riesgo, pues tras 30 años de uso no se ha detectado ni un solo problema de salud asociado a estos productos.

La propia UE ha reconocido que en la práctica será imposible cumplir la ley de transgénicos, que obliga a identificar como tal a estos productos, pues en la práctica es imposible diferenciar, por ejemplo, un tomate convencional de otro editado con CRISPR.

Mientras, EE UU, China, Brasil, Argentina, Australia y otros países han decidido no considerar las plantas modificadas con CRISPR como transgénicos, lo que les da una ventaja. “Está claro que esta situación va a suponer un retroceso científico y comercial para Europa”, explica Francisco Barro, investigador del Instituto de Agricultura Sostenible (CSIC). Barro ha usado CRISPR para crear un trigo sin gluten. “Por ahora hemos conseguido reducir la toxicidad para celiacos en un 85% y esperamos conseguir llegar al 100% en un año”, explica Barro, que asegura que ya hay varias empresas de EE UU interesadas en las patentes de este cultivo.

Los firmantes de la carta confían en que la situación se pueda revertir. Dirk Inze, director científico del Centro de Biología de Sistemas de la Universidad de Gante y principal promotor de la iniciativa, dice que ya recibieron señales positivas del anterior equipo de la Comisión Europea y espera que el entrante pueda elaborar pronto legislación para que se apruebe en el Parlamento. “Estamos muy frustrados de tener una herramienta tan potente y no poder usarla”, reconoce.

En un discurso poco antes del final de su mandato, Vytenis Andriukaitis, comisario europeo Salud y Seguridad Alimentaria y ex cirujano cardiaco, dijo el 21 de junio: “Si seguimos así [Europa] se convertirá en el museo de la agricultura primitiva”.

“Ya hacemos toda nuestra investigación fuera de la UE”

Aún no ha llegado ningún vegetal modificado con CRISPR al mercado, pero los primeros podrían llegar en solo unos años, explica Esteban Alcalde, jefe de asuntos regulatorios de Syngenta, una de las mayores empresas de la industria agrícola que recientemente adquirida por una compañía China. “Todo el trabajo de investigación en edición genética que hacemos ya se hace fuera de la UE, en China y en EE UU”, reconoce. Asaja, la mayor organización de agricultores de España, también está a favor de estas prácticas “siempre y cuando lleven el aval de la Agencia Europea de los Alimentos”, explica Pedro Gallardo, vicepresidente de la organización. La normativa está restando competitividad a los productores europeos frente a países como Brasil o China, que está haciendo una gran apuesta por esta tecnología. “Este año en España se ha perdido el 38% del cultivo de cereal por la sequía y este problema va a ir a más con el cambio climático, necesitamos cultivos adaptados”, resalta. La única oposición a estas variantes viene de organizaciones minoritarias, como la Confédération Paysanne de Francia, que originó el litigio que ocasionó la sentencia del TJUE, a la que apoyan organizaciones ecologistas como Amigos de la Tierra o Greenpeace.

Leer en El País

Publicado en 4º ESO, Estructura y dinámica de la Tierra, Recursos, Volcanes, Terremotos y Tectónica

¿El choque entre placas tectónicas causa siempre cordilleras?

Es posible que en las etapas tempranas de nuestro planeta no existieran relieves montañosos como los que observamos hoy

Cuando hay colisión entre las placas, sí se forman siempre cordilleras. Pero la interacción entre las placas puede ser de otro tipo además de la colisión o choque. Aunque para entender lo que ocurre entre ellas es mejor que empecemos por explicar lo que son las placas. Eso que en geología llamamos placas tectónicas son las piezas en las que se divide la capa más externa y rígida de nuestro planeta. Esa capa externa, rocosa, se llama litosfera y está formada por la corteza y la parte superior del manto que se encuentra debajo. La litosfera de nuestro planeta tiene un grosor variado según sea oceánica o continental. Las regiones emergidas de la superficie terrestre corresponden a las áreas con litosfera continental que es más gruesa, hasta 150 kilómetros o más. Mientras que la litosfera oceánica es más delgada y más densa, por eso está sumergida. Esta litosfera terrestre está rota en piezas, las llamadas placas tectónicas, que están en continuo movimiento unas respecto a otras y forman una especie de puzle. Es en los bordes de esas piezas en movimiento donde se forman las cordilleras, se produce la mayor parte de los terremotos más grandes y las alineaciones de volcanes activos.

Las piezas que forman ese puzle en la superficie son siete grandes placas que pueden estar constituidas por litosfera oceánica o continental o por trozos de ambas. También hay docenas de otras placas más pequeñas que acomodan los movimientos de las grandes. Las placas pequeñas se suelen mover más deprisa que las grandes, y todos esos movimientos es lo que denominamos tectónica de placas. Existen tres tipos principales de movimiento relativo en los bordes entre las placas: la convergencia, las dos placas se aproximan; la divergencia, las placas se separan; y la transcurrencia cuando se deslizan una al lado de otra.

La convergencia es, por ejemplo, el caso de la cordillera del Himalaya, donde chocan frontalmente dos masas continentales que han generado las montañas más altas de nuestro planeta. También nuestra cordillera de los Pirineos, aunque es mucho más pequeña, se ha generado por el mismo proceso. Si la convergencia ocurre en un límite entre litosferas oceánicas o una oceánica y otra continental, lo que ocurre es que una de ellas, siempre la oceánica, se mete bajo la otra. A esta acción la llamamos subducción y suele provocar la formación de volcanes. Eso es lo que ocurre en el llamado arco de fuego del Pacífico, donde se generan los arcos de islas. Cuando la subducción se debe a la convergencia entre una masa continental y una oceánica, como pasa en el margen pacífico de América del Sur, entonces se forma una cordillera de montañas y volcanes como la de Los Andes.

En los límites divergentes, las placas se separan una de la otra y en el hueco que se origina por esa separación el manto sale hacia la superficie, empieza a solidificar y cuando se consolida crea nueva corteza oceánica que rellena la grieta. También se forman en este caso cordilleras, con un valle pronunciado que marca la grieta en el medio. Un ejemplo es la dorsal Atlántica que forma una alineación de montañas de miles de kilómetros de longitud de sur a norte y está sumergida en el medio de ese océano. Esa separación que ocurre en la dorsal atlántica hace que las costas de los continentes del este se alejen de las costas de los del oeste. La velocidad de la separación depende de las zonas, pero puede alcanzar un par de centímetros al año que es aproximadamente la velocidad a la que crecen nuestras uñas.

El tercer tipo de movimiento relativo en los bordes de placas se da cuando se mueven en paralelo, deslizándose una al lado de la otra. Ese deslizamiento paralelo puede ser en sentido contrario o en el mismo sentido pero a distinta velocidad y también suele generar alineaciones de montañas. Un ejemplo de límite transcurrente entre dos masas continentales es la famosa falla de San Andrés, en California, causante de terremotos de gran magnitud. Los límites transcurrentes también ocurren en el fondo de los océanos entre dos litosferas oceánicas.

Los movimientos de las placas y la formación de montañas como las que vemos hoy son procesos que existen desde hace unos mil millones de años. Para que existan esas placas lo primero que se necesitó fue que la corteza de la Tierra se enfriara y se solidificara y por tanto, es posible que en las etapas tempranas de nuestro planeta desde su formación hace unos 4.500 millones de años no existieran placas ni relieves montañosos como los que observamos hoy.

Joaquina Álvarez Marrón es doctora en Geología, jefa del departamento de Estructura y Dinámica de la Tierra y Cristalografía del Instituto de Ciencias de la Tierra Jaume Almera del CSIC

Leer en El País

Publicado en 4º ESO, Recursos

4t Biologia i Geologia

GEOLOGIA (1a AVALUACIÓ)

A-  PRESENTACIONS UTILITZADES A CLASSE

  1. Tectònica de Plaques 
  2. Deformacions : Plecs i falles 
  3. El temps geològic
  4. Història del planeta Terra 

B-  APUNTS I ACTIVITATS  DE CLASSE

  1. Apunts “Mètodes d’estudi i capes de la Terra “
  2. Activitats “Mètodes d’estudi i capes de la Terra “
  3. Apunts  “Tectònica de plaques”
  4. Activitats “Tectònica de plaques”
  5. Quadre resumm límits completat 
  6. Activitats erosió i transport (CB) 
  7. Activitats talls geològics

C-PRACTIQUES LABORATORI 

  1. Estudi de la densitat de la Terra ( guia pràctica)
  2. Introducció a l’estudi de les roques (guia)
  3. Introducció a l’estudi de les roques ( fitxa alumne)
  4. Corrents de convecció (guió de la pràctica)
  5. Corrents de convecció ( informació teòrica)
  6. Les roques ( 5 activitats)
  7. La sedimentació (presentació-power de la pràctica) 
  8. La sedimentació ( disseny d’un experiment)
  9. Colades de lava 
  10. Camp magnètic 

D-ALTRES

  1. Animació sobre el moviment de les plaques 
  2. Document : La dinàmica interna de la Terra ( ARC RECURSOS)
  3.  Pàgina de la NASA amb el desplaçament de les plaques

E- EXÀMENS (curs 18-19)

  1. Continguts examen 1 ( dijous 18 d’octubre) 
  2. CONTINGUTS EXAMEN 1A AVALUACIÓ 

F- VÍDEOS I ANIMACIONS

  1. Animacions i exercicis plaques i estructura Terra  ( materials Lurdes Luengo)

2- MEDI AMBIENT (Impactes) (2a avaluació)

A-  PRESENTACIONS UTILITZADES A CLASSE

  1. Impactes i riscos 
  2. Efecte hivernacle i canvi climàtic 

B- ACTIVITATS DE CLASSE

  1. Calculadora de carboni 

C-PRACTIQUES LABORATORI 

  1. La pluja àcida (guia practica i com fer el treball)
  2. Resultats pluja àcida

2- BIOLOGIA : Biotecnologia ( de la cèl·lula al DNA)
( 2a avaluació )

A-  PRESENTACIONS UTILITZADES A CLASSE

  1.  La cèl·lula unitat de vida (unitat 1 biologia)
  2. ADN i Electroforesi ( identifiquen amb l’ADN)
  3. Els transgènics 
  4. Aplicacions en biotecnologia ( clonació i selecció d’embrions) 
  5. Investiguem la vacuna contra la SIDA ( sortida al Caixaforum de Tga) 

B-  ACTIVITATS DE CLASSE

  1. La cèl·lula i els cromosomes (unitat 1 biologia)(teoria)
  2. Activitat 1 : Cèl·lula i cromosomes 
  3. Ajuda’m a curar el càncer de la Nadia ( treball a INF)
  4. Simulació ( fem un adn recombinant)
  5. Vocabulari bàsic biotecnologia 

C- PRACTIQUES LABORATORI 

  1. Extracció del DNA ( pràctica i activitats ) 
  2. Identificació de proteïnes (Biuret)
  3. Observació dels llevats al micrsocopi
  4. Informació sobre els llevats
  5. Estudi de la fermentació alcohòlica 17-18
  6. Estudi de la fermentació alcohòlica 18-19
  7. Enzims : La catalasa
  8. Enzims : l’amilasa
  9. Estudi de la mosca del vinagre
  10. Els dàfnies surten de marxa
  11. Extracció de pigments (treball complementari)
  12. Extracció de pigments ( informació i fòrmules)

D-ALTRES

  1.  La mitosi ( activitat arc recursos, vídeos)
  2.  Biotecnologia ( documents de treball aula-xplorehealth)
  3. Descobrim el DNA ( entrada del bloc amb presentacions i vídeo) 
  4. Vocabulari bàsic de biotecnologia  

E- VÍDEOS

  1. La biotecnologia a les nostres vides ( vídeo introducció a la biotecnologia )

E- EXÀMENS (curs 16-17)

  1. Guia per a preparar l’examen cèl·lula, nucli, genètica molecular i biotecnologia (2018)

D-ALTRES

  1. Aigües de Reus 


GENÈTICA I EVOLUCIÓ (3a avaluació)

A-  PRESENTACIONS UTILITZADES A CLASSE

  1.  Introducció ( evolució) ( què en sabem del tema ?)
  2. Evolució 
  3. Evolució humana 

B-  DOCUMENTS DE CLASSE

  1. Vocabulari bàsic 
  2. Problemes genètica 18-19
  3. Problemes de genètica (repàs)
  4. ENIGMES 
  5. Apunts d’evolució ( conceptes bàsics i teories)
  6. Activitat amb CAMINÀLCULS (SIMULACIÓ DE L’EVOLUCIÓ)

C-PRACTIQUES LABORATORI 

  1. Extracció de pigments vegetals (resum pràctica)
  2.  Treball complementari ( amb les fòrmules)

D-ALTRES

1- Com es desenvolupa un medicament ? ( Joc Xplorehealt)

Publicado en 2º Bachiller, 4º ESO, Artículos científicos, Biología, Genética, Recursos

Las 5 preguntas más importantes sobre CRISPR/Cas9

La novedosa técnica está revolucionando la ingeniería genética. Pero ¿resultan las tijeras moleculares CRISPR/Cas9 tan ventajosas como prometen?

La técnica de edición genética CRISPR/Cas9 funciona como unas tijeras selectivas que cortan y modifican cualquier secuencia del genoma con una gran precisión y eficacia. Pero ¿resultan siempre fiables? [iStock/vchal]

La ingeniería genética está experimentando un impulso renovador. Una década después del Proyecto del Genoma Humano, que no rindió todos los frutos esperados, ha irrumpido una técnica cuyas posibilidades parecen infinitas. CRISPR/Cas9, unas tijeras moleculares que modifican el ADN en puntos escogidos con una precisión sin precedentes, está generando nuevas esperanzas. La estrategia ya está revolucionando todas las áreas de la ingeniería genética, y se considera indiscutible que sus descubridores serán merecedores de un premio Nobel. No obstante, el método no se halla exento de problemas. Los efectos no deseados que puede provocar, las limitaciones técnicas y las objeciones éticas representan importantes obstáculos de la edición genética.

¿Cómo funciona CRISPR/Cas9?

La técnica de edición genética CRISPR/Cas9 se basa en un complejo sistema inmunitario de las bacterias que les protege contra los virus. Se trata de una inmunidad adquirida, o adaptativa, que «recuerda» las secuencias de ADN de los patógenos de ataques anteriores y corta su ADN en caso de una nueva infección.

Es precisamente esta combinación de reconocimiento y corte la que utiliza la técnica CRISPR/Cas9. En la variante más simple, se inyecta en la célula ARN que codifica una proteína llamada Cas9 y una secuencia de reconocimiento. La célula emplea el ARN para sintetizar la proteína, la cual se pone a trabajar junto con el ARN de reconocimiento añadido: Cas9 corta el ADN de doble cadena exactamente donde el fragmento de ARN asociado le indica que lo haga. Dado que es posible sintetizar artificialmente cualquier secuencia de ARN, tal combinación permite cortar cualquier genoma en cualquier lugar, al menos teóricamente.

Las llamadas secuencias CRISPR, presentes en el material genético de las bacterias, se conocen desde la década de 1980. El microbiólogo Francisco J. M. Mojica, de la Universidad de Alicante, contribuyó en una parte fundamental a su descubrimiento y denominación. La abreviatura significa «repeticiones palindrómicas cortas agrupadas y regularmente espaciadas», es decir, secuencias palindrómicas cortas repetidas que están separadas por otro material genético y que con frecuencia aparecen en el genoma en ubicaciones específicas. Resultó que el material genético que había entre las secuencias repetidas a menudo procedía de virus, lo que permitió deducir que CRISPR correspondía a un sistema que permitía a las bacterias defenderse de ellos.

Más tarde, se observó que todas las bacterias con dicho sistema presentaban, en la vecindad de CRISPR, unos genes asociados que se denominaron cas. Estos constituyen el elemento esencial de la defensa antivírica. El sistema CRISPR de la bacteria «cosecha» ADN vírico e integra partes de él entre las secuencias repetidas del genoma bacteriano. Como resultado, la célula produce ARN complementario del ADN vírico y lo ensambla con proteínas Cas. Si un virus intenta infectar de nuevo la célula con este ADN, el ARN «reconoce» el genoma del virus y, a continuación, las proteínas Cas lo cortan para que no vuelva a causar daños.

El origen de la técnica de edición genética se basa en el descubrimiento de que las proteínas Cas cortan cualquier ADN siempre que se les proporcione un ARN de reconocimiento adecuado, y esto es lo que hace CRISPR/Cas9. Después del corte, se confía en los mecanismos naturales de reparación de la célula, los cuales se ponen en marcha de forma espontánea.

Si en ese momento solo las dos partes del genoma se hallan separadas, interviene un mecanismo de reparación celular que las vuelve a conectar, aunque a menudo resulta impreciso y produce los llamados indeles, pequeños fragmentos de ADN que se insertan o eliminan en el punto de corte y que pueden inutilizar los genes implicados. Sin embargo, cuando el ADN flota libremente en la célula con los dos cabos sueltos, interviene otro sistema más precciso, denominado reparación por recombinación homóloga (HDR), que los vuelve a conectar y da lugar a cambios específicos en el genoma.

¿Cuáles son los problemas éticos?

Los expertos han estado debatiendo desde hace tiempo sobre los problemas éticos fundamentales asociados a la modificación genética en los seres humanos. Pero hasta ahora el debate había sido puramente hipotético, ya que los procedimientos eran demasiado burdos e imprecisos como para poderlos trasladar en serio en ensayos con humanos. Pero la edición genética permite en principio introducir cambios en el genoma con una elevada precisión. De hecho, ya en 2015, varios grupos de trabajo chinos informaron de que, mediante el método CRISPR/Cas9, habían intentado eliminar de embriones humanos ciertas enfermedades hereditarias. Reparar genes que provocan dolencias es actualmente la aplicación más obvia en los humanos, puesto que nadie puede objetar en contra de sus fines terapéuticos.

¿O en realidad sí? Los críticos temen que tales procedimientos hagan posponer aún más la definición de «defecto genético» hasta que todas las variantes genéticas, excepto las más necesarias, se consideren defectuosas y, por tanto, necesiten ser reparadas. El bebé de diseño, hecho a medida, el tema de muchas consideraciones más o menos útiles sobre la ética de las modificaciones en la línea germinal, aparecería así bajo el pretexto de la curación.

Sin embargo, el problema más urgente no son las posibles consecuencias de los bebés de diseño, sino, en primer lugar, las consecuencias que tales experimentos tendrán en vista del conocimiento extraordinariamente incompleto que se tiene de los efectos genéticos reales. Las investigaciones para crear un bebé «a medida» pueden conllevar décadas, pero no está claro si tal espera disuadirá a todo el mundo. Quizás tales experimentos simplemente se prohíban, como sucedió con unos experimentos de 2015 en los que se aumentaba la capacidad infecciosa de ciertos virus.

Por el contrario, la eliminación de enfermedades hereditarias ya se halla en la agenda. En algunos casos, la corrección de un solo un gen, o tal vez un solo alelo, probablemente será factible pronto. La mayoría de los expertos consideran que esta opción es éticamente justificable. Sin embargo, incluso en este caso existe el riesgo de que la intervención pueda tener consecuencias imprevisibles a largo plazo si, por ejemplo, el gen corregido se transmite a los descendientes y tiene en ellos efectos que nadie había previsto. En tiempo reciente, el sorprendente anuncio de un investigador chino de que había ayudado a nacer dos gemelas con el genoma editado para protegerlas del VIH despertó una enorme controversia.

En la actualidad, CRISPR/Cas9 y otros métodos relacionados ya están revolucionando todos los ámbitos en los que pueda tener interés la modificación genética. La edición genética resulta más fácil y más precisa que cualquier otra técnica diseñada hasta ahora. Pero, ante todo, debe quedar claro qué se entiende por un «organismo modificado genéticamente»: ¿lo es aquel con un gen modificado mediante CRISPR/Cas9 en un solo lugar? ¿O este simplemente ha incorporado una nueva variante a su acervo génico natural? ¿Es un cerdo sin sus retrovirus endógenos como cualquier otro cerdo?

Resultará interesante ver la reacción de los consumidores cuando tales organismos ocupen los estantes de los supermercados como productos que se hallan en el umbral entre lo «natural» y lo «artificial». En ese momento, a más tardar, la verdadera cuestión técnica de la definición de ingeniería genética se volverá emocional. Muchas personas no desean ver nada en su plato que esté «modificado genéticamente»; pero para ello será necesario reconocer los organismos modificados, incluso si sus genes cambiados no difieren de las variantes naturales y, por lo tanto, también pueden hibridarse con organismos inalterados. Tal transparencia difícilmente sería posible con el sistema actual, sobre todo por lo que se refiere el ganado.

Análisis de ADN por electroforesis en gel. Las proteínas Cas pueden cortar cualquier ADN siempre y cuando se aporte también el ARN de reconocimiento apropiado. Después, uno debe confiar en los mecanismos naturales de reparación de la célula. [iStock/Bill Oxford]
Análisis de ADN por electroforesis en gel. Las proteínas Cas pueden cortar cualquier ADN siempre y cuando se aporte también el ARN de reconocimiento apropiado. Después, uno debe confiar en los mecanismos naturales de reparación de la célula. [iStock/Bill Oxford]

Las consideraciones éticas en torno a CRISPR/Cas9 abordan también/ el equilibrio entre los beneficios buscados y los riesgos de la técnica, como la posibilidad de modificar lugares no deseados del genoma. Los ecosistemas también pueden verse amenazados cuando se liberan en el medio silvestre mosquitos o productos agrícolas modificados genéticamente. Tampoco está claro cuál es el riesgo de que el material genético modificado salte a otras especies. Por otro lado, es difícil predecir las consecuencias de renunciar a la técnica cuando esta pretende curar una enfermedad. En ese caso, oponerse a la poderosa CRISPR/Cas9, a pesar de sus inconvenientes fundamentales, no resulta menos controvertida.

¿Cuáles son las limitaciones de CRISPR/Cas9?

En su origen biológico, CRISPR/Cas9 es un instrumento de destrucción: una rotura en una doble hebra representa una intervención bastante drástica del genoma y, a menudo, no puede repararse sin dejar un daño permanente. Esta propiedad puede resultar útil cuando se pretende incapacitar un gen mediante los denominados indeles: pares de bases que se eliminan o se añaden y hacen que la sección del genoma resulta ilegible. Desafortunadamente, a veces también se producen indeles cuando se incorpora ADN adicional a través del sistema de reparación HDR.

Si se necesita practicar una modificación genética de alta precisión, como en las terapias génicas, las roturas de doble cadena del sistema CRISPR original son, por lo tanto, un problema fundamental que uno desea evitar. Las nuevas variantes de CRISPR/Cas9, por ejemplo, cortan solo una hebra, lo que reduce notablemente los indeles en lugares no deseados del genoma y mejoran mucho la precisión de la técnica.

Aun así, nunca pueden evitarse del todo los cambios no deseados del sistema CRISPR/Cas9, los que se producen en lugares del genoma distintos del que se pretendía. Estos pueden tener lugar porque la enzima de corte Cas9 funciona incluso si el ARN de reconocimiento difiere de la secuencia de ADN en hasta cinco lugares. Tales errores son extaordinariamente difícíles de identificar después. O puede suceder el efecto contrario en genes que supuestamente han sido inactivados: si bien la mutación deseada se incorpora en el lugar adecuado del genoma, el gen sigue «leyéndose» correctamente.

La actual técnica de CRISPR/Cas9 también presenta otros problemas. Aunque puede cortar con precisión una ubicación definida del genoma, necesita que en la proximidad exista una secuencia de genes específica que no puede seleccionarse a voluntad. Este es el caso en la mayoría de los genomas, si bien no en todos (y, naturalmente, nunca en el que uno está trabajando). Además, la maquinaria CRISPR/Cas es muy voluminosa, por lo que resulta difícil introducirla en las primeras células embrionarias de los mamíferos: el gen cas y el ARN reconocimiento son simplemente demasiado grandes para los «transportadores» genéticos que se emplean habitualmente, los virus que introducen el material genético en la célula de interés. El ARN debe inyectarse directamente, lo que limita la eficacia.

De hecho, uno de los parámetros más importantes de una técnica de edición genética es su eficacia; dicho de otro modo, en qué proporción el genoma objetivo se modifica de la manera deseada. Ninguna de las tijeras genéticas utilizadas hoy en día garantizan que cumplan su misión; de hecho, la probabilidad de que lo hagan es relativamente baja, incluso en algunas de las aplicaciones más prometedoras. CRISPR/Cas9 no participa en realidad en la edición del gen de interés. Esta se produce de forma más o menos aleatoria. En las células madre humanas pluripotentes inducidas, por ejemplo, la eficacia de CRISPR/Cas9 es de entre el 2 y el 5 por ciento. En otros sistemas, como el de los embriones de pez cebra, la probabilidad de una mutación exitosa es a veces superior al 70 por ciento, aunque la terapia génica para las enfermedades hereditarias de los peces no constituyen un mercado muy grande.

¿Cuáles serán las aplicaciones futuras de CRISPR/Cas9?

En la investigación biotecnológica, CRISPR/Cas9 ha alcanzado una excelente posición como herramienta de ingeniería genética. Incluso se ha ido más allá con versiones nuevas que permiten regular de forma específica la actividad de los genes en el laboratorio. Para ello, se utiliza una proteína Cas9 inactivada, que se adhiere solo firmemente a fragmentos concretos de ADN. Si tal proteína se une a un dominio promotor, la actividad del gen correspondiente aumenta. Si, en cambio, bloquea la secuencia del gen en sí, el sector del genoma correspondiente deja de traducirse en ARN. Con la ayuda de diferentes proteínas unidas a sistemas Cas9 inactivos, ahora también es posible explorar los efectos epigenéticos, por ejemplo, marcando mediante fluorescencia la posición espacial de ciertas secuencias. Por medio de enzimas asociadas que escinden o unen grupos metilo o acilo, tales sistemas CRISPR/Cas9 también pueden alterar la epigenética de las células.

Pero, sobre todo, CRISPR/Cas9 se utiliza en la actualidad para crear de forma muy eficaz organismos modificados genéticamente, aquellos en los que un determinado gen se ha modificado, insertado o inactivado a través de una mutación. Tales procedimientos son mucho más antiguos que CRISPR. En 2007, por ejemplo, los inventores de la denominada inactivación (knockout) genética fueron galardonados con el premio Nobel de fisiología o medicina. No obstante, la técnica CRISPR/Cas9 es más rápida, más barata y más versátil que los métodos anteriores. En el laboratorio también puede solucionarse uno de los problemas principales de CRISPR: el tamaño requerido del ARN. En la actualidad, por ejemplo, existen varias razas de ratones que son portadoras de la proteína Cas9 en su propio genoma; tan pronto como llega a la célula una determinada señal molecular, como el ARN de reconocimiento correspondiente, la molécula se mantiene a la espera para alterar el genoma.

Editar genes en embriones para evitar ciertas enfermedades graves sería la aplicación más obvia de CRISPR/Cas9 en los humanos. La principal objeción actual son los efectos no deseados que puede provocar la técnica debido a posibles errores en el corte y en los mecanismos de reparación celular posterior. [iStock/Henrik5000]
Editar genes en embriones para evitar ciertas enfermedades graves sería la aplicación más obvia de CRISPR/Cas9 en los humanos. La principal objeción actual son los efectos no deseados que puede provocar la técnica debido a posibles errores en el corte y en los mecanismos de reparación celular posterior. [iStock/Henrik5000]

También están en curso los primeros organismos modificados cuyo objetivo, más allá de la investigación básica, tiene aplicaciones prácticas. De esta manera, si los planes de los científicos tienen éxito, en el futuro se producirán mejores modelos animales para varias enfermedades humanas, y también se desarrollarán cultivos y animales con ciertas características, como mosquitos Anopheles resistentes a la malaria. Un ejemplo interesante es la eliminación, en del genoma del cerdo, de retrovirus potencialmente peligrosos, un requisito importante previo al plan de generar órganos humanos en animales.

Además, CRISPR/Cas9 ha hecho avanzar la técnica denominada impulso génico (gene drive), un mecanismo mediante el cual se hacen propagar con rapidez ciertos rasgos artificiales en poblaciones de animales silvestres. Ello resulta interesante para el control de mosquitos que transmiten enfermedades graves en algunas regiones. La investigación médica también ha puesto la atención en CRISPR/Cas9 como herramienta para luchar contra virus y bacterias patógenos, con el fin de realizar cortes precisos en el ADN de estos microorganismos e impedir que prosperen. Sin embargo, todavía no está del todo claro cómo transportar el ARN necesario a la ubicación deseada en una enfermedad real.

¿Qué alternativas existen a la técnica CRISPR/Cas9?

Una cosa es segura: a pesar de la sentencia en la disputa de patentes entre Emmanuelle Charpentier y Jennifer Doudna, por un lado, y Feng Zhang, por el otro, la batalla por los beneficios del método CRISPR/Cas9 no ha hecho más que empezar. Debido al enorme potencial de la técnica, las regalías se cuentan en miles de millones. Pero, si se mira en perspectiva, quizá no. Mientras que la Universidad de California todavía está en condiciones de obtener al menos de una parte del pastel, varios grupos de investigación han estado explorando otras opciones a la técnica.

Porque CRISPR/Cas9, como hemos visto, tiene desventajas y limitaciones. La más importante es que las tijeras genéticas solo son, en realidad, adecuadas para realizar un corte en el ADN. Si uno desea incorporar nuevo material genético, debe confiar en la célula. En muchos casos, la técnica no es lo suficientemente eficaz como para modificar varios genes a la vez, como se desea. Además, CRISPR/Cas9 no corta en todos los sitios del genoma.

Por esta razón, los métodos que precedieron a CRISPR/Cas9 no se han abandonado del todo: tanto las TALEN como las nucleasas con dedos de zinc, dos tipos de tijeras genéticas más antiguas, todavía se utilizan en la ingeniería genética. Estos procedimientos son mucho más complicados. Sin embargo, si además de los inconvenientes de CRISPR/Cas9 persiste durante más años la incertidumbre sobre los derechos de licencia, los expertos podrían alejarse de CRISPR/Cas9, al menos en lo que se refiere a la investigación con posibles aplicaciones comerciales.

También continúan las investigaciones sobre otras opciones. En la primavera de 2016, un grupo de investigación chino publicó un trabajo que indicaba que una proteína llamada NgAgo hacía lo mismo que CRISPR/Cas9, incluso mejor. Pero los resultados demostraron ser prematuros. Igual que sucedió con el entusiasmo que despertó una proteína llamada lambda Red, que se le supone la capacidad real de editar genes y que ha sido investigada por Zhang, el pionero de CRISPR, durante 14 años sin mucho éxito.

Lars Fischer

Publicado en Artículos científicos, Ciencia, Genética, Recursos

Muere el Nobel Sydney Brenner, el científico que revolucionó la biología con un gusano

El investigador sudafricano se considera uno de los más influyentes del siglo XX por sus trabajos en la regulación genética del desarrollo celular

Sydney Brenner nació en Sudáfrica en 1927 y ha muerto hoy, 92 años después, en Singapur. Durante la segunda mitad del siglo XX, fue protagonista de los hallazgos que revolucionaron la forma de entender el funcionamiento de los seres vivos; cómo convierten la información contenida en su ADN en los tejidos de sus órganos o en sus comportamientos.

En 2002, mucho más tarde de lo que quizá hubiesen merecido sus méritos, recibió el Premio Nobel de Fisiología o Medicina. El motivo fue su aportación al conocimiento sobre cómo regulan los genes el desarrollo y la muerte de las células. Para conocer esos mecanismos eligió al gusano Caenorhabditis elegans, un diminuto organismo con solo 959 células, lo bastante simple para responder a preguntas científicas básicas. Ahora, cientos de científicos los utilizan en todo el mundo para responder todo tipo de preguntas sobre biología, y compañías como la valenciana Biopolis prueban en ellos sustancias que pueden ayudar a retrasar el envejecimiento o reducir la grasa corporal.

Brenner recibió el Nobel por su trabajo con el gusano, pero como recuerda el biólogo y expresidente del CSIC Carlos Martínez Alonso, “podría haberlo recibido por muchos otros motivos”. En 1952, llegó al laboratorio de Cambridge donde Francis Crick y James Watson estaban a punto de resolver la estructura del ADN y desde entonces no abandonó la vanguardia de la investigación biológica. Entre 1953 y 1966 participó en la edad dorada de la biología molecular, cuando se desvelaron los principales secretos del código genético y la producción de las proteínas.

Algunos de los descubrimientos que podrían haber valido un Nobel según Martínez son los que se refieren al código genético. Junto a su mentor Crick, Brenner probó que ese código requiere tres unidades de ADN para montar cada uno de los aminoácidos, los ladrillos con los que se fabrican las proteínas. En 1960, junto a Matthew Meselson y François Jacob, demostró la existencia del ARN mensajero, el intermediario encargado de llevar la información contenida en los genes hasta las factorías que producen proteínas en las células. Este hito también habría merecido el máximo galardón científico.

Muere el Nobel Sydney Brenner, el científico que revolucionó la biología con un gusano

A mediados de los 60, tras una década que lo cambió todo, Crick y Brenner decidieron que ya habían resuelto los problemas fundamentales de la herencia y la biología molecular. El científico sudafricano decidió dedicar su genio a tratar de resolver un problema aún más complejo: cómo los genes diseñan animales. Para asaltar el enigma, Brenner propuso utilizar como modelo un organismo que se pudiese cultivar en un laboratorio. El elegido fue el C. elegans, hasta entonces nunca empleado en investigación.

Además del desarrollo de un organismo a partir de sus genes, al científico le interesaba el funcionamiento del cerebro. El gusano tenía un sistema nervioso lo bastante simple como para tratar de identificar la relación entre su comportamiento y las conexiones entre sus neuronas. Pero incluso con un cerebro tan sencillo como el de C. elegans, esta última tarea resultó imposible, aunque el trabajo con este organismo produjo resultados fascinantes. Junto a dos de sus estudiantes, John Sulton y Robert Horvitz, con los que después compartiría el Nobel, fue capaz de definir los pasos por los que a partir de una sóla célula de un huevo se podía construir un adulto con 959 células. El gusano también fue el primer organismo pluricelular en ser secuenciado, un paso que sirvió en el camino para la secuenciación del genoma humano.

Brenner ha trabajado prácticamente hasta el final de sus días y la muerte le ha encontrado en Singapur, un país que ayudó a convertir en una potencia en investigación biomédica desde que empezó a asesorar a su Gobierno a principios de los 80. Hasta el final también siguió apoyando a los más jóvenes, porque son los únicos capaces de resolver los problemas nuevos. “Mi problema es que se demasiado para enfrentarme a algunos problemas. Soy un firme creyente en que la ignorancia es importante para la ciencia. Si sabes demasiado, empiezas a ver por qué las cosas no funcionarán. Por eso es importante cambiar de campo de trabajo, para acumular ignorancia”, decía al New York Times en el 2000.

Se ha ido Brenner, uno de los gigantes de la biología del siglo XX, y se le llorará, casi siempre con sinceridad. Los que lo hagan con lágrimas de cocodrilo serán perdonados por el científico sudafricano. Él, que lo hizo todo en biología, tuvo entre sus primeros empleos, según le contó un día Brenner a Martínez, el de plañidero.

Leer en El País

Más información

Publicado en Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida

Nuevas pistas para localizar a LUCA, el primer ser vivo de la Tierra

Desde hace décadas, los biólogos tratan de encontrar los restos de nuestro Último Antepasado Común, el “padre” de toda la vida de nuestro planeta. Pero podrían haber estado buscándolo en el lugar equivocado

Todas las criaturas que pueblan la Tierra descienden de un único organismo. Uno que fue el primero, hace miles de millones de años, en estrenar todos los procesos físicos y químicos propios de lo que hoy llamamos «vida». Los científicos le han dado un nombre a este organismo: LUCA, del inglés Last Ultimate Common Ancestor o, en español, el Ultimo Antepasado Común.

La búsqueda de LUCA se ha convertido, desde hace décadas, en una especie de obsesión para los biólogos que estudian el origen de la vida en nuestro planeta. ¿Cómo era? ¿Dónde vivía? ¿Qué tipo de ambientes eran sus preferidos?

Las formas de vida más antiguas halladas en la Tierra tienen una edad de 3.760 millones de años. Pero las características de esos microbios, dotados ya de cierta complejidad y diversidad, hacen pensar que existió una forma de vida anterior, de la que todos descienden, y que esa forma de vida podría ser incluso varios cientos de millones de años más antigua.

Hasta ahora nadie ha conseguido identificar a LUCA. Pero las pistas que nos llevarán hasta él son cada vez más numerosas. No olvidemos que el código genético que LUCA inauguró es universal, esto es, compartido por todos los seres vivos presentes y pasados del planeta. Lo cual quiere decir que las características de LUCA están, en cierto modo, «grabadas» en el interior de nuestros propios genes.

Lo que sabemos sobre LUCA

Ahora, un equipo de investigadores del Instituto Pasteur, en París, ha encontrado una nueva pista sobre LUCA. Una que quizá nos permita, por fin, llegar hasta él. En un estudio recién publicado el biorxiv.org, en efecto, los científicos explican que el antepasado común de toda la vida terrestre prefería, probablemente, los climas moderados, y no el calor abrasador que en aquellos lejanos tiempos debió ser dominante y que muchos biólogos piensan que era el ambiente en el que LUCA se movía. El hallazgo, si se confirma, podría significar que hemos estado buscando a estos primeros organismos en el lugar equivocado.

Sabemos ya que LUCA apareció muy pronto en la historia de la Tierra, por lo menos hace 3.900 millones de años, y que relativamente poco tiempo después se dividió en dos grupos bien diferenciados, bacterias y arqueas, que en la actualidad dan cuenta de la inmensa mayoría de todas las especies vivas. Tuvieron que pasar miles de millones de años más para que aparecieran los primeros organismos pluricelulares, criaturas más complejas y formadas por múltiples células. De los casi 4.000 millones de años de historia de la vida en la Tierra, la inmensa mayor parte estuvo ocupada por estas criaturas unicelulares.

En su artículo, Ryan Catchpole y Patrick Forterre explican cómo han reexaminado toda la evidencia genética que indicaba, hasta ahora, que LUCA se adaptó a vivir en un ambiente de calor extremo. Y han llegado a la conclusión de que gran parte del trabajo científico anterior podría haber estado basándose en el rastreo erróneo de un gen clave, lo que alteró nuestra comprensión sobre el tipo de hábitat en en que LUCA prosperó.

Estanques a hasta 100ºC

Muchos biólogos, en efecto, han argumentado que LUCA vivía en lugares extremadamente calientes, como los estanques geotérmicos, donde las temperaturas superan ampliamente los 50, o incluso los 100 grados. Como ejemplo, esos investigadores señalan a muchas especies de arqueas actuales que viven y prosperan en ambientes de ese tipo. los organismos capaces de vivir en ambientes por encima de los 50 grados se denominan «termófilos», y los pocos conocidos capaces de sobrevivir por encima de los 80 grados reciben el nombre de «hipertermófilos».

¿A cuál de los dos tipos perteneció LUCA? El estudio de su genoma podría proporcionar piestas sobre la categoría a la que pertenece. Pero hasta ahora no se ha encontrado ni un solo ejemplar de este organismo. Sin embargo, en un magnífico estudio de 2016, un equipo de biólogos dirigido por Bill Martin, de la Universidad alemana de Düsseldorf, localizó genes universales en los genomas de algunos de los organismos más antiguos conocidos, genes que con toda probabilidad también estuvieron presentes en LUCA.

El equipo de Martin localizó 355 de estos genes. Entre ellos, uno que tiene la misión de codificar una proteína llamada girasa inversa, esencial para los hipertermófilos. Y aunque no está del todo claro qué es exactamente lo que hace este gen, sí que es cierto que se encuentra en los genomas de todos los hipertermófilos e incluso de algunos termófilos. Pero nunca en organismos «mesófilos», los que viven en ambientes a temperaturas inferiores a los 50 grados. Por lo tanto, su más que probable presencia en LUCA sugiere que, como mínimo, nuestro primer antepasado era termófilo.

En busca de genes universales

Pero Catchpole y Forterre no están tan seguros de eso. En su estudio, en efecto, identificaron 376 genes para la girasa inversa procedentes de 276 clases diferentes de arqueas y bacterias, y con ellos construyeron un árbol genealógico para establecer cómo esos genes se habían estado heredando desde la lejana época de LUCA. Para su sorpresa, su árbol no coincidía con los árboles conocidos para bacterias y arqueas, lo que sugiere fuertemente que el gen de la girasa inversa no era «original», sino que se había transferido después, y repetidamente, entre las varias especies.

Para los investigadores, esto significa que el gen no estaba presente en LUCA, sino que surgió más tarde, en un organismo posterior. Y si LUCA carecía del gen de la girasa inversa, no pudo haber sido un termófilo, amante del calor, ni mucho menos un hipertermófilo.

En resumen, Catchpole y Forterre piensan que podríamos haber estado buscando a LUCA en los lugares equivocados. El rastreo de criaturas tan extremadamente antiguas entraña una dificultad enorme, ya que los afloramientos de rocas de la Tierra primitiva son muy escasos. Quizá ahora, cambiando de estrategia, sea finalmente posible localizar a LUCA, nuestro antepasado más lejano, la primera criatura que estrenó la vida en la Tierra.

Leer en ABC

Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

El enigma del origen de la célula moderna

Científicos de Barcelona aclaran uno de los momentos cruciales en la evolución de la vida

Oculta en lo más profundo de cada una de nuestras células, disfrazada como uno más de sus departamentos de gestión e integrada hasta la médula en su lógica metabólica, habita una primitiva bacteria que nadó libre por los océanos del eón Arcaico, hace 2.500 millones de años. Hoy la llamamos mitocondria, y lo que queda de su genoma –el ADN mitocondrial— sirve a menudo para identificar a los criminales y a sus víctimas. Entender cómo aquella bacteria libre se convirtió en nuestra mitocondria es entender el origen de la célula moderna, y el episodio más importante de la evolución desde el inicio de la vida.

Alexandros Pittis y Toni Gabaldón, del Centro de Regulación Genómica de Barcelona (CRG), han husmeado ahora en la noche de los tiempos, remontándose hasta los orígenes de la célula moderna –la célula eucariota, de la que estamos hechos todos los animales, los hongos y las plantas— con los métodos actuales de la biología evolutiva, unos sofisticados algoritmos que comparan los genomas para deducir los árboles genealógicos de sus portadores. Los resultados, que presentan en la revista Nature, son fáciles de resumir: las mitocondrias llegaron tarde a nuestras células. Para entenderlos, sin embargo, tenemos que retrasar el reloj 2.500 millones de años, hasta el suceso esencial de la historia de la vida en la Tierra.

Nuestro planeta tiene 4.500 millones de años, un tercio de la edad del universo, y los primeros microbios (células procariotas, en la jerga, que incluyen bacterias y arqueas) no tardaron mucho en aparecer: hay evidencias fósiles de hace 3.500 millones de años, y el planeta era probablemente un infierno en la etapa anterior. Pese a ello, la gran invención evolutiva de la historia de la vida, la célula eucariota, solo surgió hace 2.000 o 2.500 millones de años.

Entender cómo aquella bacteria libre se convirtió en nuestra mitocondria es entender el origen de la célula moderna, y el episodio más importante de la evolución desde el inicio de la vida

La célula eucariota es un autómata biológico mucho más avanzado que las bacterias y arqueas que la precedieron. Tiene el genoma organizado en cromosomas de compleja estructura y confinado en un núcleo, que le da el nombre “eucariota” (las bacterias y arqueas tienen el ADN suelto, sin un núcleo, y por eso se llaman procariotas). Además, tienen un sofisticado andamiaje, o citoesqueleto, que permite a nuestras neuronas, por ejemplo, formar sus largos axones y dendritas. Y tiene orgánulos (pequeños órganos), como las mitocondrias, que producen y gestionan la energía celular.

Los evolucionistas saben hoy que las mitocondrias provienen de antiguas bacterias, y que nuestro genoma contiene genes de bacterias y de arqueas. La teoría dominante, de hecho, es que la célula eucariota se originó por la fusión de una arquea y una bacteria, y que la mayor parte de los genes de la bacteria se asociaron a los de la arquea para formar el núcleo. Pittis y Gabaldón ha mostrado que no es así.

“Hay teorías para todos los gustos”, dice Gabaldón, “y algunas son muy bonitas, como la de que el núcleo surgió como un mecanismo de defensa contra las mitocondrias”. Pero no son más que teorías, advierte. Los dos científicos del CRG han buscado datos firmes, y han podido refutar la teoría dominante.

“Los genes de las proteínas mitocondriales tienen las ramas más cortas, en los árboles filogenéticos, que los que hace las proteínas del núcleo y de otras estructuras celulares”, dice Gabaldón. “Y el núcleo ya era una combinación de genes de bacterias y arqueas antes de la llegada de las alfa-proteobacterias, las bacterias precursoras de las mitocondrias”. El origen de la célula moderna no fue, por tanto, un suceso único de simbiosis, sino una simbiosis serial.

Hay teorías para todos los gustos, y algunas son muy bonitas, como la de que el núcleo surgió como un mecanismo de defensa contra las mitocondrias

Las proteínas más viejas de la célula eucariota provienen sobre todo de arqueas, según los datos de los investigadores de Barcelona. Se ocupan de las funciones autoalusivas de nuestras células: la replicación del genoma, su transcripción (o copia a ARN, una molécula similar al ADN, pero con una sola hilera de letras en vez de dos) y la traducción de éste al lenguaje de las proteínas, que son las nanomáquinas que ejecutan todas las funciones celulares.

Las proteínas de edad intermedia son de origen bacteriano, pero no de las alfa-proteobacterias que originaron las mitocondrias, sino de otros grupos de bacterias muy distintos. Curiosamente, estas proteínas están hoy, sobre todo, en los sistemas de membranas intracelulares (retículo endoplásmico y aparato de Golgi, llamado así por el gran rival de Ramón y Cajal).

Como toda buena investigación, la de Pittis y Gabaldón plantea más preguntas que respuestas. Una de las mejores es: ¿de qué bacteria salieron esos sistemas membranosos, junto a los genes para fabricar sus proteínas? Gabaldón se muestra cauto: ha visto caer demasiadas teorías bonitas en los últimos 20 años.

Leer en El País

Un fósil millones de años dentro de nuestras células

Nuestro metabolismo ya existía hace 3.000 millones de años, antes que nuestros genes

Recreación de la Tierra durante el eón Arcaico Ampliar foto
Recreación de la Tierra durante el eón Arcaico, en los albores de la vida, de 4.000 a 2.500 millones de años atrás. The Archean World / Peter Sawyer

Los estudiosos del origen de la vida se enfrentan a una paradoja circular (como la del huevo y la gallina) que, probablemente, puede considerarse el más profundo misterio de la biología evolutiva. Toda la vida que conocemos tiene un fundamento doble: la auto-replicación, o capacidad de un organismo para sacar copias de sí mismo, y el metabolismo, la cocina de la célula que fabrica continuamente sus componentes básicos. Hoy están vinculados de forma inextricable, pero ¿cuál surgió primero en la noche de los tiempos? ¿Y de qué servía el uno sin el otro?

Una investigación bioquímica que imita las condiciones de los sedimentos del eón Arcaico (en los albores de la vida en la Tierra, hace de 4.000 a 2.500 millones de años atrás) muestra que dos rutas metabólicas (cadenas de reacciones químicas, o la cocina de la célula) ya funcionaban entonces igual que ahora, dentro de cada una de nuestras células. Tanto en la era Arcaica como hoy mismo, esas rutas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro. Es un fuerte indicio de que el metabolismo es anterior a las enzimas (proteínas con actividad catalítica) que lo ejecutan hoy. Y también, proponen los autores, a los genes que contienen la información para fabricar esas enzimas.

Tanto en la era Arcaica como hoy mismo, las rutas metabólicas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro

Una de las implicaciones más extraordinarias del trabajo de Markus Keller y Markus Ralser, del Centro de Biología de Sistemas de la Universidad de Cambridge, y sus colegas, que se presenta en Science Advances, es que llevamos dentro de cada una de nuestras células un testigo de la Tierra primitiva, como un trozo del pasado remoto: un sistema complejo y autoconsistente que, posiblemente, empezó a funcionar antes de la invención de la primera bacteria del planeta. Más aún: una invención que fundamentó la evolución de la primera bacteria. Un invento tan brillante que 3.000 millones de años de evolución no han podido superar. Da vértigo. Casi da hasta asco.

La máquina del tiempo de Keller y Ralser se basa, de manera paradójica, en la tecnología biológica más avanzada, la metabolómica. Si la genómica es el estudio simultáneo de todos los genes, y la proteómica el de todas las proteínas. La metabolómica lo es de todos los metabolitos, las moléculas simples (como la glucosa, la ribosa o el oxalato) que le sirven a toda célula para cocinar todo el resto de sus componentes, como los carbohidratos, las grasas, las proteínas y los genes.

Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. ampliar foto
Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. MARKUS KELLER

Los científicos de Cambridge se han centrado en dos de las rutas esenciales de ese metabolismo central que ocupa el centro de la cocina celular de todas las especias vivas. Se trata de la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo. Convierten los azúcares como la glucosa (la comida) en energía (la gasolina), y también aportan la materia prima para construir muchos otros componentes celulares.

La vida no podría haber surgido en el universo joven, poco después del Big Bang. Porque del Big Bang solo salieron los elementos más simples, el hidrógeno y el helio, y los sistemas biológicos necesitan átomos más pesados, como el carbono y el nitrógeno, y algunos mucho más pesados, como los metales que catalizan las reacciones esenciales. Entre estos últimos, el más importante durante el eón Arcaico en que evolucionó la vida primitiva era el hierro (concretamente el hierro ferroso, por oposición al hierro férrico, más conocido como óxido en el lenguaje común).

Los científicos de Cambridge se han centrado en la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo

Y es a este hierro (ferroso) al que responden los ciclos metabólicos de los investigadores de Cambridge. El hierro cumplía en aquella noche de los tiempos la función que hoy tienen las enzimas metabólicas, las nanomáquinas de gran complejidad que catalizan hoy esas mismas reacciones. Pero que, como atavismo del pasado remoto, siguen conservando en sus centros activos, o núcleos lógicos, el mismo metal, y en el mismo estado de oxidación (ferroso) que entonces.

Hoy hace falta un gen para fabricar un catalizador (una enzima). Entonces solo hacía falta comerse el hierro del océano circundante. Sí, puede que la vida fuera más fácil en el pasado. Pero también era menos interesante.

Más aún, nuestros procesos metabólicos centrales, los que operan en nuestras neuronas para alimentarlas de energía y materiales de construcción, siguen revelando cierta capacidad de auto-sostenimiento que no depende de las enzimas codificadas por los genes, sino del mero hierro (ferroso) que las antecedió en ese papel.

No hemos cambiado tanto en los últimos 3.000 millones de años. Al menos no tanto como en los últimos 10.

Leer en El País