Publicado en 2º Bachiller, 4º ESO, Artículos científicos, Biología, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

El tamaño de los oídos revela cuándo aparecieron los animales de sangre caliente

El tamaño de las estructuras de los oídos puede ser clave para entender la aparición de la sangre caliente debido a la viscosidad del líquido de su interior, según un estudio publicado en Nature.

Un mammaliamorfo que exhala aire caliente en una noche gélida, lo que insinúa que es endotérmico (sangre caliente)

https://www.larazon.es/ciencia/20220721/eapnf5xhfrg65klhitavibhcpm.html

Publicado en 2º Bachiller, Artículos científicos, Biología, Ciencia, Cultura Científica, Genética, Recursos

Parecidos por fuera y por dentro: personas desconocidas con caras similares comparten un ADN semejante

Un estudio muestra que los dobles, sin vínculo familiar posible, tienen un genoma cercano, aunque difieren en su epigenoma y su microbioma. El hallazgo, apuntan los investigadores, puede tener implicaciones dentro de las ciencias forenses

El País

Publicado en 4º ESO, Artículos científicos, Ciencia, Genética, Recursos

El cromosoma Y está desapareciendo… ¿Qué va a ser de los hombres?

Puede que el cromosoma Y sea un símbolo de la masculinidad, pero cada vez es más evidente que no es ni sólido ni perenne. Pese a que el cromosoma porta el gen «maestro» SRY que determina si el embrión se desarrollará como macho (XY) o hembra (XX), contiene muy pocos genes y es el único cromosoma que no es necesario para la vida. Al fin y al cabo las mujeres han salido adelante sin este cromosoma.

No solo eso, sino que el cromosoma Y se ha degenerado rápidamente hasta el punto de que las mujeres cuentan con dos cromosomas X perfectamente normales, mientras que los hombres tienen un cromosoma X y un cromosoma Y en decadencia. Si la tasa de degeneración del cromosoma continúa a este ritmo, al cromosoma Y solamente le quedan 4,6 millones de años hasta que desaparezca del mapa. Puede que parezca mucho tiempo, pero no lo es si tenemos en cuenta que la vida en la Tierra existe desde hace 3.500 millones de años.

El cromosoma Y no siempre ha sido como lo conocemos. Si retrocedemos 166 millones de años en el tiempo hasta los primeros mamíferos, la historia era completamente diferente. El cromosoma «proto-Y» de antaño tenía originalmente el mismo tamaño que el cromosoma X y contenía todos los mismos genes. Sin embargo, los cromosomas Y tienen un defecto fundamental: a diferencia del resto de cromosomas, de los que tenemos dos copias en cada una de nuestras células, los cromosomas Y solamente están presentes en una copia que se pasa de padres a hijos.

El cromosoma Y se ha degenerado rápidamente hasta el punto de que las mujeres cuentan con dos cromosomas X perfectamente normales, mientras que los hombres tienen un cromosoma X y un cromosoma Y en decadencia.

Esto significa que los genes en el cromosoma Y no pueden experimentar una recombinación genética, la «mezcla» de genes que se produce en cada generación y que ayuda a eliminar las mutaciones de genes perjudiciales. Sin los beneficios de la recombinación, los genes del cromosoma Y se degeneran con el tiempo y finalmente acaban perdiéndose del genoma.

File 20180115 101502 1tinnv3 Cromosoma Y en rojo al lado del cromosoma X, mucho más grande. Instituto Nacional de Investigación del Genoma Humano

A pesar de esto, las últimas investigaciones han demostrado que el cromosoma Y ha desarrollado algunos mecanismos muy convincentes para «ponerle freno al asunto», disminuyendo el ritmo de pérdida de genes hasta casi paralizarlo.

Por ejemplo, un estudio reciente llevado a cabo en Dinamarca y publicado en PLoS Genetics realizó secuencias genéticas en porciones del cromosoma Y de 62 hombres diferentes y descubrió que es susceptible a reorganizarse estructuralmente a gran escala para permitir la «amplificación de los genes» (la adquisición de múltiples copias de los genes que promueven la buena salud del esperma y mitigan la pérdida de genes).

El estudio también demostró que el cromosoma Y ha desarrollado una estructuras inusuales llamadas «palíndromos» (secuencias de ADN que se pueden leer de la misma forma en ambas direcciones, como la palabra «kayak») para protegerse de una mayor degradación.

Recopilaron una alta tasa de «procesos de conversión de genes» dentro de las secuencias palindrómicas en el cromosoma Y (básicamente un proceso de «copia y pega» que permite a los genes dañados regenerarse utilizando una copia de seguridad que no esté dañada como modelo).

Las últimas investigaciones han demostrado que el cromosoma Y ha desarrollado algunos mecanismos muy convincentes para disminuir el ritmo de pérdida de genes hasta casi paralizarlo

Si nos fijamos en otras especies (el cromosoma Y existe en los mamíferos y en algunas otras especies), cada vez hay más pruebas de que la amplificación de los genes del cromosoma Y es un principio generalizado. Estos genes amplificados juegan un papel crítico en la producción de esperma y (por lo menos en el caso de los roedores) en la regulación de la proporción de sexos de la descendencia.

Varios investigadores demostraron recientemente en el estudio Biología Molecular y Evolución que este aumento del número de copias de genes en ratones es un resultado de la selección natural.

Sobre la cuestión de si el Cromosoma Y acabará desapareciendo, la comunidad científica, como en el caso del Reino Unido ahora mismo, está dividida entre «los que se quedan» y «los que se van». El segundo grupo alega que los mecanismos de defensa hacen un buen trabajo y han salvado al cromosoma Y. Mientras que el primer grupo dice que lo único que están haciendo es que el cromosoma Y penda de un hilo hasta que termine por desaparecer. El debate sigue a la orden del día.

File 20180117 53328 Kim7f9 El roedor «ellobius talpinus» no tiene cromosoma Y

Una de las personas al frente de los que están a favor de que los cromosomas Y van a desaparecer, Jenny Graves de la Universidad de La Trobe en Australia, defiende que a largo plazo los cromosomas Y están condenados a desaparecer aunque puede que se resistan durante más tiempo de lo esperado. En un artículo científico del año 2016, señala que algunos roedores como las ratas tokudaia muenninki y los roedores ellobius talpinus han perdido por completos sus cromosomas Y. También defiende que el proceso de pérdida o de creación de genes en el cromosoma Y lleva inevitablemente a problemas de fertilidad. Esto puede acabar suponiendo la creación de nuevas especies.

¿La desaparición de los hombres?

Tal y como argumentamos en un capítulo del nuevo libro publicado en formato electrónico, aunque el cromosoma Y acabe desapareciendo en los humanos, no tiene por qué significar la extinción del sexo masculino. En muchas especies en las que el cromosoma Y ha desaparecido siguen haciendo falta ambos sexos para la reproducción.

En estos casos, el gen «maestro» SRY (que determina el sexo masculino del genoma) pasa a otro cromosoma, lo que significa que la especie produce machos sin necesidad de un cromosoma Y. Sin embargo, el nuevo cromosoma que determina el sexo (el nuevo cromosoma del gen SRY) volverá a comenzar un proceso de degeneración debido a la misma falta de recombinación que supuso la extinción del cromosoma Y previo.

Aunque el cromosoma Y acabe desapareciendo en los humanos, no tiene por qué significar la extinción del sexo masculino. En muchas especies en las que el cromosoma Y ha desaparecido siguen haciendo falta ambos sexos para la reproducción

Sin embargo, lo interesante en el caso de los humanos es que, pese a que el cromosoma Y es necesario para una reproducción humana normal, muchos de los genes que porta no son necesarios en el caso de la reproducción asistida. Esto significa que puede que la ingeniería genética pronto sea capaz de reemplazar la función genética del cromosoma Y, lo que permitiría tener hijos a las parejas de mujeres del mismo sexo o a los hombres infértiles. Sin embargo, incluso aunque fuera posible para todo el mundo reproducirse de esta manera, sería poco probable que las personas fértiles dejarán de reproducirse de forma natural.

Aunque estamos ante un debate muy interesante y animado en el mundo de la investigación genética, no existen motivos para preocuparse porque ni siquiera sabemos si el cromosoma Y acabará desapareciendo. Como hemos dicho, aunque lo haga, seguiremos necesitando el sexo masculino para poder continuar con la reproducción normal de la especie.

De hecho, la idea de un sistema de «granjas» donde unos pocos hombres «afortunados» serían elegidos para ser los padres de la mayoría de nuestros hijos no es una opción que esté en ciernes. Lo que sí que habrá será problemas mucho más importantes en los próximos 4,6 millones de años.

Autores:

  • Darren Griffin, Catedrático de Genética, Universidad de Kent
  • Peter Ellis , Doctor de Biología Molecular y Reproducción, Universidad de KentLeer en xataca
Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

Revelado el origen evolutivo de los miembros de los vertebrados

Las primeras criaturas que se arrastaron hasta tierra firme recurrieron a la aleta dorsal única, o dorso, común a todos los peces con mandíbulas, como elemento de desarrollo de las protoextremidades.

Al pensar en el primer pez que se arrastra de las aguas primordiales hacia la tierra, es fácil imaginarse sobre cómo sus aletas emparejadas finalmente evolucionaron hacia los brazos y las piernas de los vertebrados modernos, incluidos los humanos.

Pero un nuevo estudio de investigadores de la Universidad de Chicago y del Centro Andaluz de Biología del Desarrollo muestra cómo estas criaturas utilizaron un modelo genético aún más primitivo para desarrollar sus proto-extremidades.

El estudio, publicado esta semana en ‘Nature Genetics’, demuestra que los peces, los ratones y probablemente todos los vertebrados modernos comparten elementos genéticos empleados por primera vez para desarrollar la incomparable aleta dorsal en peces antiguos. Más tarde copiaron estos elementos para producir apéndices emparejados, como aletas pélvicas y pectorales, brazos y piernas.

«La aleta dorsal no emparejada es la primera que se ve en el registro fósil –señala el coautor del nuevo estudio Neil Shubin, profesor de Anatomía en la Universidad de Chicago–. Aquí mostramos que los mecanismos genéticos que configuran todas las aletas y otros apéndices emparejados originalmente surgieron allí y fueron reubicados a otros».

Shubin y sus colegas de España, dirigidos por José Luis Gómez-Skarmeta, realizaron análisis genéticos en ratones y varios tipos de peces para rastrear la expresión de Sonic hedgehog (Shh), un gen ampliamente utilizado en una variedad de funciones biológicas básicas, pero especialmente importante en la formación de extremidades.

     En ratones, un potenciador genético o un interruptor de encendido/apagado llamado ZRS controla la expresión de los miembros de Shh. Si eliminas ZRS en un ratón, sus extremidades no se desarrollarán correctamente. Los investigadores utilizaron herramientas de edición de genes CRISPR/Cas9 para eliminar ZRS en el medaka, un pez de acuario pequeño y popular también conocido como pez de arroz japonés. Esperaban que eliminar ZRS en el medaka afectara a sus aletas emparejadas, pero en cambio el pez no desarrolló su aleta dorsal. Las aletas pectorales y pélvicas emparejadas se desarrollaron normalmente.

Eso llevó al equipo a buscar otros potenciadores genéticos que podrían estar involucrados, y encontraron un «potenciador en la sombra» cercano llamado sZRS que parece funcionar junto con el interruptor ZRS principal. Cuando noquearon ZRS y sZRS en el medaka, se perdieron tanto la aleta dorsal como las aletas emparejadas. Eso significa que es probable que ZRS se usó por primera vez para ayudar a desarrollar las aletas dorsales, y luego se copió y reutilizó como sZRS cuando las aletas aparecieron por primera vez hace unos 475 millones de años.

«Es muy antiguo, y la secuencia y la función se conservan en todos los vertebrados —destaca Shubin en un comunicado–. Resulta que el rol primitivo del ZRS estaba involucrado con la aleta dorsal. Solo más tarde su actividad en las aletas emparejadas requirió de este otro potenciador en la sombra«.

Shubin dice que entender la actividad de estos potenciadores ayuda a identificar las huellas de ancestros evolutivos presentes en todos los vertebrados, desde ‘Tiktaalik roseae’, la especie de transición de 375 millones de años de antigüedad que descubrió en 2004, hasta los humanos de hoy en día.

«Una serie de enfermedades humanas se basan en errores en ZRS que pueden llevar a dedos extra o faltantes, o cambios en la forma de las manos –señala–. Los humanos probablemente también tengan este potenciador en la sombra, por lo que si queremos estudiar la dinámica de cómo esto afecta al patrón de las extremidades, lo que vemos en estos modelos de peces es un gran lugar para comenzar».

Leer en europapress

Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Ciencia, Origen y evolución de la vida, Recursos, Vídeos

Ponte a prueba: ¿cuánto sabes sobre la evolución?

¿Los seres humanos descienden de los monos? ¿Evolución y religión son incompatibles? ¿La evolución sucede gradualmente?

Existen numerosas preguntas sobre «el proceso de transformación de las especies a través de cambios producidos en sucesivas generaciones», como define la RAE a la evolución.

Y, a pesar de su base científica, los conceptos erróneos abundan.

Por eso, te proponemos que midas tu conocimiento sobre la evolución en este quiz.

Créditos de las fotos: Getty Images / Agradecimiento a Paula Kover, de la Universidad de Bath, por su ayuda con el cuestionario.

Si no puedes ver el quiz, haz clic aquí.

Combatiendo los conceptos erróneos

Kay Fountain, una científica veterinaria que estudia la evolución de las bacterias en murciélagos en el Centro de Evolución Milner de la Universidad de Bath, en Reino Unido, está consciente de que hay mucha gente que tiene dudas sobre la evolución.

Según ella, «lo clásico es que la gente no quiere decir que descendemos de los simios, y tiene razón, porque descendemos de un ancestro común», le dice a la periodista de la BBC Helen Briggs.

Derechos de autor de la imagen Getty Images
Image caption Los animales también evolucionan como los humanos.

A través de diferentes cursos los científicos de su universidad están trabajando para ayudar a las personas a comprender mejor y enseñar el concepto de evolucióncon un curso en línea.

También están llevando a cabo investigaciones para mejorar la enseñanza del tema en las escuelas.

Y por eso, mientras habla, Fountain muestra una pezuña de elefante peluda que cabe en una mano para dar una idea de cómo, a lo largo de millones de años de evolución, los animales perdieron los dedos de las patas y desarrollaron una sola pezuña.

Mientras tanto, su colega Nicholas Priest les enseña a los niños los conceptos básicos de la evolución a través de su trabajo sobre las moscas de la fruta.

Dice que la evolución como concepto es algo con lo que todos pueden relacionarse, siempre que obtengan la exposición adecuada.

«Hasta cierto punto, la razón por la que tenemos estos conceptos erróneos es queno ha habido un mensaje claro sobre cuál es la historia y qué muestra realmente la última evidencia», dice.

Derechos de autor de la imagen Getty Images
Image caption Los científicos sostienen que enseñar genética primero puede ayudar a comprender mejor la evolución.

Por su parte, la doctora Momna Hejmadi dice que la investigación muestra que es mejor enseñar primero genética, es decir, los conceptos básicos de cómo funciona la herencia, para obtener una mejor comprensión de la teoría de la evolución.

«Debido a que la evolución es la vida misma, toda la vida en la Tierra tiene una base evolutiva», dice.

«No se trata solo de comprender cómo comenzó la vida sino que también, en términos de tratamientos y terapias -células madre o resistencia a los antibióticos- todos estos temas de salud están condicionados a nuestra comprensión de la evolución», afirma.

Leer en BBC

http://invdes.com.mx/ciencia-ms/descubren-los-microfosiles-mas-antiguos-jamas-vistos-en-la-tierra/

 

Publicado en Artículos científicos, Información y manipulación genética, Recursos

Un Hito médico, operan por primera vez la columna de un feto sin sacarlo del útero de su madre.

El King’s College Hospital de Londres se ha convertido en el primer centro del Reino Unido en realizar una cirugía fetoscópica (ojo de la cerradura) en bebés con espina bífida mientras aún se encuentran en el vientre de su madre.

Guiados por ultrasonido, un equipo de neurocirujanos y especialistas en medicina fetal introdujeron una cámara e instrumentos a través de pequeñas incisiones en el estómago de la madre para reparar los orificios en la médula espinal del bebé sin la necesidad de realizar cortes invasivos en el abdomen.

Hasta hace poco, las mujeres que llevaban a un bebé con espina bífida que decidían continuar con su embarazo podían optar por reparar el agujero en la espalda de su bebé después del nacimiento u optar por una cirugía fetal invasiva. Esto implica hacer una incisión grande a lo ancho del abdomen de la mujer durante el embarazo para acceder al útero, que luego se abre para reparar la columna vertebral dañada del bebé. El útero y el abdomen se cierran y el embarazo continúa.

Utilizando el novedoso enfoque mínimamente invasivo, se hace una pequeña incisión en el abdomen de la mujer y se introduce un fetoscopio (un tubo largo y delgado con una luz y una cámara al final) en el útero. Los cirujanos acceden a la médula espinal expuesta que sobresale a través de un orificio en la espalda del bebé y lo libera del tejido circundante para que pueda volver a introducirse en el canal espinal. Se usa un parche especial para luego cubrir la médula espinal y luego el cierre de los músculos y la piel para evitar que el líquido espinal se escape.

El Sr. Bassel Zebian, consultor neurocirujano del Hospital King’s College, quien dirigió la parte de neurocirugía del equipo que llevó a cabo el procedimiento, dijo: «Varios centros de todo el mundo han logrado grandes avances en la reparación fetal abierta en los últimos años y han demostrado el beneficio. de la cirugía fetal para reducir la severidad de la condición y las complicaciones asociadas. El objetivo del enfoque fetoscópico es reducir los riesgos para la madre y los embarazos futuros, a la vez que se asegura un beneficio máximo para el bebé».

La Dra. Marta Santorum-Perez, Consultora en Medicina Fetal, quien dirigió la medicina fetal, parte del equipo agregó: “Solo un puñado de centros en todo el mundo tiene la experiencia necesaria para realizar una cirugía con un fetoscopio. Tuvimos la suerte de entrenar y trabajar estrechamente con la Dra. Denise Lapa Pedreira, Consultora en Medicina Fetal en el Hospital Albert Einstein en Sao Paolo, quien fue pionera en esta técnica».

Sherrie Sharp, de 28 años, de Horsham, en West Sussex, descubrió que su bebé tenía espina bífida después de su exploración de 20 semanas en otro hospital. Sherrie, quien dio a luz a un hijo, Jaxson Nicholas Leonard James Sharp, el sábado de Pascua (20/04/19) fue una de las primeras en hacerse la cirugía pionera en King’s. Por coincidencia, la propia Sherrie se benefició del Departamento de Medicina Fetal en King’s, dirigido por un especialista de renombre mundial, el profesor Kypros Nicolaides, cuando desarrolló una grave anemia en el útero de su madre y recibió transfusiones de sangre que le salvaron la vida a través del abdomen de su madre.

Habiendo tenido experiencia de primera mano en King’s, Sherrie se refirió al Departamento de Medicina Fetal donde le ofrecieron la reparación fetoscópica. Sherrie dijo: “Cuando descubrimos que Jaxson tenía espina bífida, me dieron varias opciones. Sabíamos que queríamos mantener a nuestro bebé y hoy estoy aquí gracias a los especialistas de King’s, así que quería que mi bebé tuviera la misma oportunidad. El procedimiento duró más de tres horas y los especialistas se mostraron satisfechos con el resultado. Estamos encantados con nuestro hermoso niño y, aunque llegó antes de lo esperado, lo está haciendo bien y su espalda está sanando muy bien».

La espina bífida es una condición por la cual la columna vertebral de un bebé no se cierra completamente durante el embarazo dejando un agujero en la espalda y la médula espinal expuesta. Esto causa daño a la médula espinal que resulta en debilidad o parálisis total, así como pérdida de sensibilidad en las piernas, así como disfunción urinaria e intestinal. Muchos bebés con espina bífida también desarrollan problemas con su cerebro, incluida la hidrocefalia (una acumulación de líquido en el cerebro), que puede dañar aún más el cerebro y requiere drenaje.

Se ha demostrado que la cirugía durante el segundo trimestre del embarazo reduce el grado de debilidad en las piernas y mejora la función, además de reducir las posibilidades de desarrollar hidrocefalia.

Fuente: King’s College Hospital.

Leer en Comunidad biológica

Publicado en Evolución y clasificación de seres vivos, Origen y evolución de la vida, Recursos

El origen de la vida en una burbuja de gas

Las primeras moléculas precursoras de la vida podrían haberse producido en las interfases entre líquido y gas de las burbujas atrapadas en el agua de las rocas volcánicas de la primitiva corteza terrestre

Muchos procesos fisicoquímicos tuvieron que darse hasta que nació la vida. En otras palabras, la era de la evolución biológica debió llegar tras una evolución química prebiótica, durante la cual se ensamblaron y seleccionaron las primeras moléculas capaces de replicarse. Así, ante este escenario surge inmediatamente una nueva pregunta:

¿Bajo qué condiciones ambientales podría haber tenido lugar la evolución prebiótica?

De entre las posibilidades, existe una hipótesis discutida y explorada durante mucho tiempo: estas moléculas predecesoras de la vida podrían haber surgido en los pequeños poros de las rocas volcánicas mientras nuestro planeta estaba todavía formándose.

Ahora un equipo internacional de investigadores dirigido por Dieter Braun, profesor de biofísica de sistemas en la Universidad Ludwig-Maximilians de Munich -LMU ha examinado más de cerca las interfases agua-aire que se producen en estos poros, donde las burbujas de gas que se forman espontáneamente sufren una interesante combinación de efectos.

Las moléculas predecesoras de la vida podrían haber surgido en los pequeños poros de las rocas volcánicas

Así, los investigadores descubrieron que estas burbujas podrían haber jugado un papel importante para facilitar las interacciones fisicoquímicas que contribuyeron al origen de la vida. Específicamente, Braun y sus colegas preguntaron si las interfases -periodos de transición- entre los estados líquido y gaseoso de los fluidos atrapados en dichas rocas, podrían haber estimulado los tipos de reacciones químicas que desencadenaron las etapas iniciales de la evolución química prebiótica. Sus hallazgos recogidos en el artículo titulado Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules se publican esta semana en la revista especializada Nature Chemistry.

La vida en una burbuja

El estudio respalda firmemente la idea de que pequeñas burbujas llenas de gas que quedaron atrapadas y reaccionaron con las superficies de los poros en las rocas volcánicas, podrían haber acelerado la formación de las redes químicas que finalmente dieron lugar a las primeras células.

Detectan un ingrediente de la vida alrededor de un grupo de estrellas muy jóvenes

Más información

Detectan un ingrediente de la vida alrededor de un grupo de estrellas muy jóvenes

4

Fotografías

En su investigación, los autores pudieron verificar y caracterizar experimentalmente los efectos facilitadores de las interfases aire-agua en las reacciones químicas relevantes. De este modo, si existe una diferencia de temperatura a lo largo de la superficie una de estas burbujas, el agua tenderá a evaporarse en el lado más cálido y se condensará en el lado más frío, al igual que una gota de lluvia que cae en una ventana corre por la superficie plana del vidrio y eventualmente se evapora .»En principio, este proceso puede repetirse hasta el infinito, ya que el agua realiza ciclos continuos entre la fase gaseosa y la fase líquida», explica Braun, quien ha descrito el mecanismo y los procesos físicos subyacentes en detalle junto con el estudiante de doctorado Matthias Morasch . «El resultado de este fenómeno cíclico es que las moléculas se acumulan a concentraciones muy altas en el lado más cálido de la burbuja», añade.

Los procesos necesarios para la formación de biomoléculas se aceleran en la interfase agua-aire

«Comenzamos realizando una serie de mediciones en las velocidades de reacción bajo diversas condiciones, para obtener algunos datos que nos permitieran entender como funciona este proceso», comenta Morasch. El fenómeno resultó ser sorprendente: incluso las moléculas más pequeñas podrían concentrarse a niveles relativamente altos. «Luego centramos nuestra atención en una amplia gama de procesos físicos y químicos que deben haber desempeñado un papel central en el origen de la vida. Comprobamos que todos ellos se aceleraron notablemente o fueron posibles bajo las condiciones que prevalecen en la interfaz aire-agua», añade.

Los primeros ladrillos de la vida

Los investigadores de la LMU muestran que los procesos fisicoquímicos que promueven la formación de polímeros se estimulan, o se hacen posibles en primer lugar, por la disponibilidad de una interfaz entre el entorno acuoso y la fase gaseosa, que mejora notablemente las tasas de reacciones químicas y los mecanismos que las catalizan.

«El hallazgo sugiere cómo podrían haberse formado las primeras protocélulas rudimentarias y sus membranas externas»

De hecho, en sus experimentos, las moléculas generadas podrían acumularse a altas concentraciones dentro de las membranas lipídicas cuando los investigadores agregaron los componentes químicos apropiados para la formación de estas segundas. «Las vesículas producidas de esta manera no son perfectas. Sin embargo, el hallazgo sugiere cómo podrían haberse formado las primeras protocélulas rudimentarias y sus membranas externas«, afirma Morasch.

A la búsqueda del aminoácido extraterrestre

Más información

A la búsqueda del aminoácido extraterrestre

«Si este tipo de proceso puede tener lugar en tales vesículas no depende de la naturaleza del gas dentro de la burbuja. Lo importante es que, debido a las diferencias de temperatura, el agua puede evaporarse en un lugar y condensarse en otro», añade Braun. «Nuestro modelo explicativo permite combinar ambos efectos, lo que mejoraría el efecto de concentración y, por lo tanto, aumentaría la eficiencia de los procesos prebióticos», sentencia.

Leer en National Geographic