Publicado en 1º Bachiller, 1º ESO, Artículos científicos, Ciencia, El árbol de la vida, Hongos, Protoctistas y Moneras, Recursos

¿Son estas las criaturas más raras de la Tierra?

El hallazgo de dos nuevos organismos obliga a añadir una nueva rama al Árbol de la Vida

Son extraños, muy extraños. Tanto, que los investigadores no saben en qué rama del Árbol de la vida deberían colocar a estos organismos recién descubiertos en Canadá. Por eso, proponen en un artículo de Nature que se cree una nueva clasificación, especialmente pensada para ellos.

Los organismos, dos especies de microbios hasta ahora desonocidas y encontradas en una muestra de tierra canadiense, resultan tan diferentes a todo lo conocido que los investigadores no han tenido más remedio que reorganizar el Árbol de la Vida para dejarles un espacio.

Las criaturas, asignadas al reino Protista, el que contiene a todos los organismos eucariontes (hechos de células con núcleo y membrana) que no pueden ser clasificados en los otros tres reinos eucariotas (Hongos, Animales y Plantas), fueron colocados al principio en un grupo denominado hemimastigotes, pero los primeros análisis genéticos revelaron que tampoco ese era su lugar, ya queresultaron ser mucho más extraños de lo que nadie había llegado a sospechar.

Los primeros hemimastigotes fueron observados a principios del siglo XIX y clasificados como un Phylum aparte dentro de un «super reino» mucho más grande, aunque los biólogos de aquella época ya reconocían que no sabían exactamente dónde colocarlos.

Pero las nuevas evidencias halladas en su ADN demuestran que estas criaturas son, también, completamente diferentes a todas las formas de vida de este super reino. De hecho, los investigadores creen que los hemimastigotes podrían ser representantes de un reino propio y completamente nuevo para la Ciencia. Lo que obligaría a añadir una nueva rama al Árbol de la Vida.

The Simpson Lab, Dalhousie University
The Simpson Lab, Dalhousie University

Raros y torpes

Las especies recién descubiertas tienen un cuerpo oblongo, rodeado por filas de flagelos en forma de hilo. Cuando los investigadores pudieron verlos por primera vez en imágenes 3D obtenidas con microscopios electrónicos de barrido, se quedaron boquiabiertos.

Según explicó a Live Science Yana Eglit, de la Universidad canadiense de Dalhousie y coautora del estudio, «tienden a moverse algo torpemente. A primera vista parecen ciliados (otro importante grupo de células de aspecto peludo), pero nadan de una forma mucho menos coordinada».

Eglit recolectó a los extraños organismos mientras caminaba por un sendero en Nueva Escocia recogiendo muestras de diversos terrenos para analizar. «Por supuesto -afirma la investigadora- cada vez que vemos un charco inusual, o lago salado, o lo que sea, aprovechamos para recoger muestras».

En honor al lugar donde fue descubierto, antiguo territorio de los Mi´kmaq, en cuyo folklore abundan las criaturas extrañas, como el ogro pekudo Kukwes, una de las especies fue bautizada como Hemimastix kukwesjijk. Un nombre de lo más adecuado, ya que se trata de un voraz depredador.

Una vida separada del resto

Las anteriores clasificaciones de los hemimastigotes se basaban únicamente en el tamaño y la forma de sus estructuras visibles. Pero gracias a su información genética, los científicos pudieron clasificar a las nuevas criaturas con una precisión sin precedentes, y revelar un linaje que ocupa una posición única entre los demás eucariotas.

En palabras de Alastair Simpson, autor principal del estudio, «se trata de una rama del Árbol de la Vida que ha permanecido separada del resto durante mucho tiempo, quizá durante más de mil millones de años, y de la que no teníamos información alguna hasta ahora».

Según los investigadores, su hallazgo servirá para conocer mejor cómo evolucionaron las primeras formas de vida celular compleja, y para establecer mejor las relaciones que existen entre los primeros organismos que poblaron la Tierra.

«Este descubrimiento -concluye Simpson- redibuja, literalmente, nuestra rama del Árbol de la Vida en uno de sus niveles más profundos. Y abre una nueva puerta para comprender la evolución de las células complejas y sus antiguos orígenes, mucho antes de que emergieran los animales y las plantas en la Tierra».

Leer en ABC

Publicado en 1º Bachiller, 4º ESO, Artículos científicos, Biologia y Geología, Ciencia, El árbol de la vida, Genética, Origen y evolución de la vida, Recursos

Miguel Pita: «Nuestro interés por el sexo no es más que un truco del ADN»

Este doctor en Genética y Biología Celular explica hasta qué punto nuestros genes son unos «diminutos dictadores» que nos dicen cómo debemos ser

En «El ADN dictador» (Ariel), Miguel Pita, doctor en Genética y Biología Celular en la Universidad Autónoma de Madrid (UAM), habla de hasta qué punto nuestros genes son unos «diminutos dictadores» que nos dicen cómo debemos ser, qué debemos sentir o qué debemos hacer. Él mismo está investigando la influencia de ciertas secuencias de ADN de receptores de neurotransmisores en determinados rasgos psicológicos.

Nuestros genes son como una especie de «microchip» en el que están programados los planes para construir el cuerpo y llevar a cabo las reacciones del metabolismo. Pero no solo eso. La investigación también muestra que los genes están detrás de que el amor no sea igual para hombres y mujeres, que algunos tengan talento para dibujar y otros no, que haya personas que se queden calvas a los treinta años o que el hombre sea el único primate en el que ha aparecido el lenguaje y una profunda espiritualidad.

¿Por qué ocurre todo esto? ¿Dónde queda el libre albedrío? Tal como Miguel Pita deja claro tanto a través de teléfono como en las páginas de su libro, toda esta complejidad es resultado de la evolución: ese largo e invisible proceso por el cual los genes que permiten dejar más descendientes tienden a perpetuarse. Pero no todo es genética: el entorno, ese conjunto de circunstancias que nos rodean, como la alimentación, la educación o el tabaquismo, también influyen en cómo el cuerpo cumplirá las instrucciones de los genes.

«El ADN dictador» (Ariel)
«El ADN dictador» (Ariel)

-Entonces, ¿es el ADN un dictador? ¿O no más que el ambiente?

En realidad el ADN es solo un dictador relativamente. Le dimos ese titulo al libro para llamar la atencion sobre el hecho de que hay muchas cosas en nuestra existencia desde el punto de vista del comportamiento determinadas en parte por la genética. Pero la ecuación la completa el ambiente. Muy pocas cosas las decide solo el ADN, pero en pocas cosas el ADN no juega un papel más o menos determinante. Se puede decir que es un dictador, pero que no es un dictador férreo.

A veces no se tiene una visión afinada de esto. Por ejemplo, se suele considerar que algunas enfermedades están escritas en los genes, cuando en realidad no lo están. Pero otras veces se cree que muchos aspectos de nuestra conducta, como el talento, solo están marcados por nuestra educación, cuando en realidad el ADN tiene mucho que decir en ellos. Y aclarar este tipo de confusiones es justamente lo que pretendía en «El ADN dictador».

-¿Comparte la visión de Richard Dawkins y su «Gen Egoísta», según la cual los organismos son meras máquinas cuya función es garantizar la supervivencia de genes?

Comparto en lo elemental la propuesta de Dawkins. En general no está rebatida, pero sí se matiza. Se asume que el ADN tiene un impulso grande para copiarse y que en el fondo somos el vehículo en el que viaja de generación en generación. Somos la copia que está viva. Así ha venido pasando desde que éramos simples bacterias.

«En el fondo somos el vehículo en el que el ADN viaja de generación en generación»

-Pero si lo importante para el gen es multiplicarse, ¿por qué no quedarse en los virus, que son los que más parecen multiplicarse?

Efectivamente, lo más práctico para un gen es estar en virus o bacterias. Los individuos complejos en el fondo tenemos que pasar muchas trabas, por ejemplo necesitamos encontrar una pareja para pasar nuestro ADN a la siguiente generación, mientras que bacterias y virus solo tienen que replicarse. Pero esto ocurre porque la evolución no es un proceso lógico, está basado en el azar. El principio es que lo que funciona persiste y lo que no funciona desaparece. Un virus es más práctico, pero un organismo complejo también funciona, entendiendo esto como que es capaz de dejar descendencia. Si se cumple esto, lo complejo y lo simple convivirán, porque ambas formas se reproducen. A lo único que pone trabas la evolución es a la infertilidad.

-Entonces, ¿es el ADN el motivo por el que estamos tan interesados en el sexo?

Sin duda. En realidad el ADN de todos los seres vivos lleva escrito en su código que en algún momento debe copiarse o reproducirse. En nuestro caso, la evolución ha construido un cerebro que nos hace que en algún momento busquemos pareja. Nuestro interés por el sexo no es más que un truco del ADN para que no olvidemos pasar una copia de nuestros genes a la siguiente generación.

Los genes determinan que nos gusten la simetría y ciertos rasgos, pero la cultura moldea estas preferencias
Los genes determinan que nos gusten la simetría y ciertos rasgos, pero la cultura moldea estas preferencias-ADOBE PHOTOSTOCK

-¿Dónde queda el libre albedrío?

Es difícil de precisar. Efectivamente hay ciertas cosas que van a ser impulsos que vienen de serie, como reproducirnos, y que tenemos necesidad de cumplir, pero el ADN no nos va a decir ni con quién ni cuándo debemos hacerlo, ni va a mover nuestras piernas. Tenemos libre albedrío hasta cierto punto, quizás menos del que pensamos cuando nos vemos como reyes de la creación. Pero si lo piensas, que el ADN nos impulse a comer todos los días para no morirnos no es una gran pérdida de albedrío, y es el típico ejemplo de impulso con el que nacemos, nos guste o no.

«Tenemos libre albedrío hasta cierto punto»

-¿Tiene la homosexualidad un componente hereditario?

La homosexualidad y sus bases biológicas y genéticas son tema de estudio actualmente. No se sabe todo al respecto, pero hay acuerdo en la comunidad científica al considerar que sí tiene una base genética y que puede ser innato. Además se conocen bastantes genes involucrados en su aparición. Pero la homosexualidad es un comportamiento muy complejo que adopta muchas formas. Hablar simplemente de homosexualidad es simplificar, pero en general podemos afirmar que tiene base genética.

-Hombres y mujeres somos biológicamente distintos. ¿Eso nos obliga a comportarnos de forma diferente?

Hombres y mujeres somos genéticamente diferentes. Por encima de todo, somos distintos en lo relativo a la sexualidad, al igual que las hembras y machos de otras especies. Eso no significa que los hombres y mujeres tengan que comportarse de forma distinta, sino que en lo referente a la sexualidad tienen intereses de partida distintos: estas diferencias no aparecen en otros aspectos sociales que no tengan que ver con lo puramente reproductor y los que se derivan de ello.

«En la sexualidad, hombres y mujeres tienen intereses de partida distintos»

Por ejemplo, hombres y mujeres tienen distintos comportamientos sexuales y un distinto nivel de agresividad innata. Los hombres tienen mayores niveles de testosterona y son más proclives a agresividad directa. ¿Por que? Porque la agresividad está relacionada con un comportamiento reproductor, no en nuestra sociedad, sino en las sociedades animales donde el hombre como especie ha surgido.

-¿Eso lo justifica?

Para nada. Todos los comportamientos son susceptibles de ser reprimidos. Además, por término medio, los hombres son más agresivos, pero puede haber mujeres que sean más agresivas que otros hombres. Es como generalizar y decir que los hombres tienen más vello facial: no creo que nadie lo discuta, pero a pesar de eso siempre habrá hombres imberbes y mujeres con más pelo en la cara.

-¿Cómo es la agresividad de las mujeres?

Hay que tener en cuenta que hay cuatro dimensiones de la agresividad: la física, la verbal, la hostilidad y la ira. La agresividad que tiene que ver con la hostilidad y la agresividad verbal es igual de frecuente en hombres y mujeres. Entre ellas, esta sirve para establecer relaciones de competencia, al igual que la directa es usada por los hombres. Esta es la base biológica, aunque está claro que se puede expresar de muchas maneras y, de nuevo, reprimir.

Evolutivamente, hombres y mujeres tienen distintos intereses de partida en la sexualidad, porque su inversión en la reproducción no es simétrica: solo ellas se quedan embarazadas
Evolutivamente, hombres y mujeres tienen distintos intereses de partida en la sexualidad, porque su inversión en la reproducción no es simétrica: solo ellas se quedan embarazadas-ARCHIVO

-¿Y a qué se debe esto?

Si pensamos en el animal que éramos en origen, los hombres competían físicamente. Pero las mujeres, como tienen otro tipo de físico y como en su cuerpo se desarrolla el embarazo, no se debían arriesgar a sufrir daños físicos en su cuerpo, y por eso recurrían a otro tipo de agresividad.

-Entonces, y sin que lo justifique, ¿puede tener el machismo una cierta base biológica?

Lo primero que hay que decir es que las personas que estudiamos las bases biológicas del comportamiento, queremos comprenderlas, pero eso no quiere decir que nos gusten. Entenderlas, además, puede servir para erradicar ciertos comportamientos de la sociedad que tienen base en el animal que llevamos dentro.

Concretamente con respecto al machismo, no creo haya nada en la biología que pueda explicar la diferencia en derechos y oportunidades que observamos en la sociedad. Lo que sí que tiene base biológica son los distintos intereses y las distintas formas de expresarlos que tienen ambos, como ocurre en tantas otras especies de mamíferos. Pero que haya diferencias claras e innatas entre hombres y mujeres no justifica que la sociedad se haya diseñado como se ha hecho.

-¿Cómo afecta la genética a la elección de pareja? ¿Hombres y mujeres tienen las mismas preferencias?

Cada individuo acaba eligiendo una pareja por un conjunto de razones difíciles de trazar. Sí que es verdad que se ha observado que en líneas generales las mujeres son mas cautas, más selectivas. De forma completamente análoga a las hembras de la mayoría de especies de mamíferos.

Hombres y mujeres están programados para sentirse atraídos por la simetría
Hombres y mujeres están programados para sentirse atraídos por la simetría-IGNACIO GIL

Por otro lado, los varones son menos selectivos, mas indiscriminados en su eleccion. Esto se lleva estudiando mucho tiempo y los comportamientos de otros mamíferos han aportado muchas pistas. La lógica de todo esto reside en que lo que se juegan varones y mujeres en la reproducción no es lo mismo: la inversión no es simétrica.

-Suena a transacción económica.

Algo así. Si las mujeres no son cautas pueden acabar gestando, criando y cuidando la descendencia de una pareja que no era la adecuada para sus intereses. Pero los hombres nunca van a tener que acarrear un embarazo y una crianza después de cometer un error.

«La evolución ha llevado a un cerebro más cauto en mujeres y más lanzado en varones»

Esa diferente inversión y riesgo que corrían los antepasados de hombres y mujeres, igual que ocurre en otros animales, se ha recogido en un cerebro más cauto en mujeres y más lanzado en varones. Obviamente, esto es una generalidad: podemos encontrar varones muy cautos y mujeres más lanzadas.

-¿Este cerebro «construido» por los genes, lleva también a que exista un patrón universal de belleza o los gustos son más bien culturales?

Hay gustos universales y particulares recogidos en la genética pero siempre matizados por la cultura. Digamos que hay tres capas: nuestros genes nos programan a mujeres y hombres para sentirnos atraídos inconscientemente por algunos valores universales, como por ejemplo la simetría.

Después, en un segundo nivel, hay gustos personales que también nos vienen de serie, y que nos llevan a elegir ciertos rasgos antes que otros. Por ejemplo se han encontrado genes relacionados con las compatibilidades entre sistemas inmunes, que son distintos en distintas personas, pero que vienen programados en su genética personal. Un tercer nivel es la educación, las aficiones, las modas…

«Los genes nos programan a mujeres y hombres para sentirnos atraídos por la simetría»

-¿Cuánto tiempo necesita la evolución para funcionar? Algunas personas dicen que el cambio climático no es tan grave porque las especies se adaptarán a él.

Los plazos son muy variables, pero son muy lentos. Con el cambio climático que estamos viviendo veremos desaparecer muchas más especies de las que se adaptarán. Como ciudadano y aquí no evolucionista, me apena escuchar argumentos como ese en el contexto desastroso de cambio climático. No hay que buscar en la evolución una justificación para las barbaridades que estamos haciendo. No tiene absolutamente ninguna relación. Pero si hay que opinar, es cierto, algunas especies se adaptarán al cambio climático, pero serán una minoría. La evolución es un proceso que ocurre muy lentamente, mientras que el cambio climático está siendo muy rápido.

Y el cambio climático no es el único problema: está atacando a la naturaleza en muchos frentes. Y no solo por la contaminación: también la superpoblación o la deforestación entran en el mismo panorama de modificación del entorno por la actividad humana.

-Las mutaciones son la base de la evolución, pero pueden ser perjudiciales para el individuo. ¿Qué tiene que pasar para que resulten beneficiosas?

Una mutación es cualquier cambio que ocurre en el ADN. Como las mutaciones ocurren al azar, la inmensa mayoría no producen cambios beneficiosos, pero incluso así explican toda la variabilidad que ha aparecido en la evolución.

Las mutaciones que generan novedades potencialmente adaptativas,y que estarán presentes en las generaciones futuras, son las que aparecen en las células reproductoras, en la línea germinal. Pero las mutaciones que aparecen en el cuerpo no tienen interés evolutivo: un lunar o un cáncer morirán con nosotros y no pasarán a nuestros descendientes.

-Teniendo en cuenta esto, ¿qué supone que desaparezca una especie?

Perder especies es como perder cupones de lotería premiados. Para que surja una nueva especie tiene que haber tantos eventos fortuitos… es tan improbable… Desde el punto de vista de la evolución, perder una especie es un desastre que nuestro vulgar cerebro no puede entender.

-¿Qué mutaciones han tenido un papel importante en la evolución del ser humano?

Los cambios clave han sido sobre todo los que tienen que ver con el desarrollo y la especialización del sistema nervioso. Personalmente, si tuviese que elegir un cambio, diría que lo más importante para nuestra especie fue adquirir la capacidad de hablar. Esto nos ha dado la posibilidad de relacionarnos de formas abstractas con otros miembros de nuestra misma especie. Esto nos permite amar profundamente, expresar emociones, formar grupos coordinados y en el fondo nos ha permitido organizarnos y a la larga conquistar el planeta.

Esta capacidad de hablar es biológica y genética: cada individuo aprende unos determinados idiomas, pero para ello necesitas ser humano y tener unos genes que no tienen nuestros parientes primates. Por eso las mutaciones que nos permitieron hablar para mí fueron la más importante que ha sufrido nuestra especie.

-¿Así apareció también la espiritualidad?

No está claro cuál es la base biológica de la espiritualidad. Se ha observado que está presente en todas las culturas y se piensa que efectivamente hay genes detrás de la tendencia humana de creer en mitos y tener ideas espirituales. Independientemente de que estos sean falsos, han moldeado completamente la historia de nuestra especie. Siempre hay un mito o un componente espiritual detrás de lo que hacemos. Nuestra capacidad de tener miedo a la muerte o de creer en un ser superior que te castiga si no cooperas con los tuyos, o el hecho de querer hacer el bien para tu clan y no para otro, han escrito nuestra historia, como especie social. No creo que haga falta poner ejemplos. Todos podemos pensar en cómo de importante ha sido la creación de mitos comunes en la historia de la humanidad.

Un elevado porcentaje del ADN humano es de origen viral. Estos microbios han tenido un importante papel en la evolución de nuestra especie
Un elevado porcentaje del ADN humano es de origen viral. Estos microbios han tenido un importante papel en la evolución de nuestra especie-WIKIPEDIA

-¿Qué papel tienen los virus en la evolución del hombre?

Los virus son fascinantes porque son poco más que un fragmento de ADN con el «impulso» de copiarse. Han tenido un papel importantísimo en la generación de variablidad. Insertan secuencias en nuestro ADN y generan una novedad: aunque casi siempre será nociva, de vez en cuando han supuesto una novedad adaptativa.

-Mirando hacia el futuro, ¿qué cambios van a suponer las técnicas CRISPR de edición genética?

Estamos en un momento fundamental de la genética. Ya podemos introducir y sacar genes o variantes de genes a nuestro antojo. Este año ha habido experimentos impactantes en los que se ha reemplazado la variante errónea de genes en embriones y se ha curado una enfermedad. Pero estos embriones se han tenido que destruir, porque ahora mismo esta tecnología no está legislada.

Por eso, de cara al futuro tenemos que tomar un montón de decisiones que son mucho más éticas que técnicas. Creo que a pesar de que la sociedad está informada no es consciente de las implicaciones de esta revolución y los científicos tenemos el deber de informar de hasta dónde puede llegar. Tenemos las herramientas, nos falta un poco de conocimiento sobre la genética de detrás de algunos rasgos, pero dentro de poco los cambios a la carta serán una realidad.

«Con CRISPR podremos evitar que las personas nazcan con enfermedades hereditarias»

Podremos evitar que las personas nazcan con enfermedades hereditarias, y eso es fantástico, pero en un futuro próximo también podremos modificar embriones para que las personas sean más altas o más fuertes. Por eso, tenemos que pensar si queremos permitir que CRISPR se use para otros objetivos que no sean curar enfermedades, y exigir a políticos que legislen al respecto.

Leer en ABC

Publicado en 1º Bachiller, 1º ESO, Artículos científicos, Ciencia, El árbol de la vida, Hongos, Protoctistas y Moneras, Recursos

Una reducida aristocracia de bacterias domina los suelos de la Tierra

El primer atlas bacteriano muestra que el 2% de las especies sustentan las poblaciones de microorganismos del suelo

Apenas el 2% de las especies de bacterias conocidas dominan la mayoría de los suelos del planeta. Como sucede con los humanos y la riqueza, esta aristocracia bacteriana está presente en los terrenos más diversos, siendo la más abundante. Esta es la principal conclusión del primer atlas bacteriano. La investigación, liderada por científicos españoles, arroja una segunda idea: no se sabe apenas nada de estos microorganismos que son el sustrato de la vida. La mayoría no tiene ni nombre.

Ya sea árido o húmedo, sustente bosques frondosos o matorrales espinosos, esté bajo el agua o en las montañas, el suelo es el sostén literal de la vida y las bacterias la savia que lo vivifica. Se estima que en un gramo de tierra puede haber miles de especies (o filotipos) de bacterias y hasta 40 millones de células bacterianas. Tal diversidad hacía que intentar catalogar las bacterias que hay en los distintos suelos del planeta pareciera una locura. Sin embargo, un grupo de investigadores ha muestreado más de doscientos ecosistemas a lo largo de seis continentes para crear el primer atlas de las bacterias del suelo.

«Gracias a la secuenciación del ADN presente en las muestras pudimos catalogar las bacterias de los distintos suelos», dice el investigador de la Universidad Rey Juan Carlos (Madrid) y la Universidad de Colorado Boulder (EE UU) y principal autor de la investigación, Manuel Delgado Baquerizo. La riqueza bacteriana de los suelos ha resultado ser muy variada. Los más pobres, que no tienen que coincidir con los desérticos, cuentan con unos 700 filotipos y el más diverso se acercó a los 2.900.

De las más de 25.000 especies de bacterias conocidas, solo 511 están presentes en la mayoría de los suelos

Sin embargo, la genética de las muestras también reveló que hay una especie de aristocracia de las bacterias. De las más de 25.000 especies identificadas, solo 511 se podrían considerar como universales: eran las más abundantes, suponiendo el 41% de toda la biomasa bacteriana, y estaban presentes en más de la mitad de los 237 suelos muestreados. «Las comunidades de bacterias siguen una dinámica muy parecida a la de la riqueza: unas cuantas engloban la mayor parte de la riqueza existente en la tierra», comenta Delgado Baquerizo.

El segundo gran resultado de este trabajo, publicado en la revista Science, es que la ciencia lo ignora casi todo de las bacterias del suelo. Ya sea porque a lo largo de la historia los científicos se han concentrado en los patógenos bacterianos o en las bacterias que podían tener alguna utilidad o por algún otro motivo, este atlas revela que en las bases de datos genómicas solo hay referencias del 18% de estos 500 filotipos. Además, muy pocas han sido aisladas y cultivadas en laboratorio.

«Es increíble lo poco que sabemos sobre las comunidades de bacterias que viven en nuestros suelos. ¡La mayoría, no tienen ni nombre! Es como si entráramos en un bosque y no supiéramos cuál es la especie de árbol mayoritaria en este bosque o la función que desarrolla esta especie en el ecosistema» dice Noah Fierer, también profesor en la Universidad de Colorado en Boulder y coautor del estudio.

La cianobacteria fijadora de nitrógeno 'Roholtiella edaphica' vista al microscopio óptico (400 aumentos).
La cianobacteria fijadora de nitrógeno ‘Roholtiella edaphica’ vista al microscopio óptico (400 aumentos). Concha Cano Díaz
 Junto a hongos y otros microorganismos, las bacterias son la vida del suelo. Intervienen en infinidad de procesos vitales. Descomponen la materia orgánica, liberan nutrientes y ellas mismas son la base de la cadena alimenticia. Además, fijan el carbono o el nitrógeno del que dependen las plantas. También neutralizan las toxinas, muchas de origen humano.

«Sin bacterias, el suelo estaría muerto y sin suelo no habría vida», recuerda el director del Laboratorio de Ecología de Zonas Áridas y Cambio Global en la Universidad Rey Juan Carlos y coautor del estudio, Fernando Maestre. «Ya sabíamos la relevancia de las bacterias para el suelo y los servicios que éste nos presta pero desconocemos aún qué función concreta hace cada especie», añade. Por eso, al identificar las 511 especies dominantes, este trabajo permitirá a los científicos centrar sus energías en esta aristocracia bacteriana y averiguar por qué son tan universales.

Leer en El País

Publicado en 1º Bachiller, Biologia y Geología, El árbol de la vida, Recursos

El árbol de la vida

3_clasificacio_1_val

3_clasificacio_2_val

exemoneraprotoctist

TEMA 12 – El árbol de la vida

tema-8-clasificacic3b3n-de-los-seres-vivos-parte-1

tema-8-clasificacic3b3n-de-los-seres-vivos-parte-2

Biosfera 1º bachiller

Animals (WEB de MC Alós). Continguts, esquemes, fotografies i molts exercicis d’autoavaluació. Nivell: ESO i Batxillerat

La pàgina dels invertebrats. Continguts i exercicis d’autoavaluació. Castellà Nivell: ESO i Batxillerat


https://wordpress.com/post/biogeociencia.wordpress.com/1883

1ºbaccPrácticasreinos

Imágenes de bacterias y hongos

Ciclo de un zigomiceto

Los líquenes son una simbiosis entre un organismo fotosintético (un alga o cianobacteria) y un hongo (ya sea un ascomiceto o basidiomiceto). Liquen a menudo viven en ambientes marginales y crecen a menudo sólo uno o dos centímetros por año. Históricamente, esta simbiosis ha sido considerada como un ejemplo de mutualismo, donde ambos organismos se benefician y no se vea perjudicada por su asociación. Organización de un liquen típico se muestra en la Figura 9.

Los líquenes han sido reconocidos como organismos de utilidad para los seres humanos. Ciertas especies de líquenes son ahora reconocidos como indicadores de contaminación ambiental, otros tipos de líquenes se han utilizado para hacer tintes naturales, o incluso para hacer puntas de flecha con punta de veneno. Debido a que a menudo viven en hábitats marginales, los líquenes han tenido que desarrollar defensas químicas, por lo que los principales objetivos de la investigación antibiótico natural. Una lugares estimación media de especies de líquenes como poseyendo una cierta clase de productos químicos antibióticos. Son líquenes son incluso comestible, aunque muchos otros son perjudiciales si se consumen, tan extrema precaución debe ser utilizada si la investigación de hongos comestibles.

Las micorrizas son hongos (por lo general un zygomycetos o basidiomicetos) simbióticas con las raíces de las plantas. Ambas relaciones son mutualista : ambas partes se benefician. Hongos proporcionan nutrientes del sustrato, la fotosíntesis proporciona la comida. Las plantas con micorrizas crecen mejor: la planta obtiene nutrientes del hongo a cambio de carbohidratos.
página: http://ies.rayuela.mostoles.educa.madrid.org/deptos/dbiogeo/recursos/Apuntes/BioGeoBach1/6-Clasificacion/ActualAnimales.htm




Blog sobre bacterias, protozoos, algas y plantas

Ejercicios del reino de las plantas:

1ºbaccexeplantas

claves dicotómicas animales

reino de los animales en pdf

reino animal con títulos

reino de plantas en pdf

Reino de plantas en PDF con subtitulos

http://multiblog.educacion.navarra.es/metayosa/category/1%c2%ba-bachillerato/biodiversidad/

 

Publicado en 1º Bachiller, Biologia y Geología, Ciencia, El árbol de la vida, Recursos

En el fondo levaduras y humanos no somos tan diferentes

El científico Paul Nurse, Premio Nobel de Fisiología y Medicina explica en esta conferencia el concepto del Árbol de la Vida darwiniano con un ejemplo extraordinario de como levaduras y humanos, que compartimos un lejanísimo ancestro común de hace la friolera de alrededor de 1.500 millones de años, seguimos manteniendo genes operativamente intercambiables.

http://tu.tv/videos/premio-nobel-paul-nurse-la-importancia-de-darwin-en-la-biomedicina_1

Un evidente ejemplo de la necesidad de seguir haciendo ciencia básica.

Leer en La ciencia y sus demonios