Publicado en 3º op, Artículos científicos, Ciencia, Nutrición, Nutrición, Nutrición, Nutrición, alimentación y salud, Recursos

¿Es la anorexia nerviosa una enfermedad del metabolismo?

Un análisis genético, de miles de pacientes, sugiere que el origen de este trastorno de la alimentación no reside solo en la mente.

También te puede interesar

La anorexia nerviosa afecta entre el 1 y el 4 por ciento de la población mundial femenina, así como el 0,3 por ciento de la masculina. Hasta la fecha, esta compleja enfermedad se define como un trastorno psiquiátrico. Sin embargo, un estudio genético reciente, publicado por la revista Nature Genetics, sugiere que el metabolismo también desempeña un importante papel en el desarrollo de la enfermedad.

Hunna J. Watson de la Universidad de Carolina del Norte en Chapel Hill, junto con más de 100 científicos de centros de investigación europeos, norteamericanos, australianos y asiáticos, realizó un estudio de asociación del genoma completo (GWAS, por sus siglas en inglés) e identificó 8 variantes genéticas relacionadas con la anorexia nerviosa.

El análisis GWAS comparó 16.992 casos de anorexia nerviosa con 55.525 sujetos sanos, de descendencia europea y 17 nacionalidades distintas. Este tipo de confrontación de datos procedentes de un elevado número de individuos permite hallar genes presuntamente asociados con características observables, como por ejemplo enfermedades.

De acuerdo con los resultados, las alteraciones genéticas identificadas  en la investigación también participan en otros desórdenes de conducta, como la depresión, la ansiedad, la esquizofrenia y el trastorno obsesivo compulsivo. Ello explicaría por qué algunos pacientes manifiestan la anorexia nerviosa junto con estas enfermedades psiquiátricas.

No obstante, la novedad del trabajo reside en otra coincidencia. Al parecer, la anorexia nerviosa compartiría características genéticas con la diabetes de tipo 2 o el metabolismo de las grasas. Asimismo, las regiones del genoma alteradas también influenciarían la actividad física. De hecho, la hiperactividad patológica constituye una de las manifestaciones clínicas de este trastorno de alimentación.

Hasta la fecha, cualquier cambio observado en el metabolismo de los pacientes se atribuía a la inanición ocasionada por la poca o nula ingesta de comida. Ahora, sin embargo, los autores postulan que las alteraciones metabólicas podrían constituir el origen, no la consecuencia, de la anorexia nerviosa. Asimismo, para los investigadores, la desregulación del metabolismo dificultaría a los pacientes recuperar el peso perdido, incluso después de someterse a tratamiento médico.

De confirmarse, el hallazgo no solo ofrecería nuevas vías para luchar contra la enfermedad, si no que también supondría una nueva definición de la anorexia nerviosa como un trastorno metabólico, además de psiquiátrico.

Marta Pulido Salgado

Referencia: «Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa», de H. J. Watson et al., en Nature Genetics, publicado el 15 de julio de 2019.

Leer en Investigación y ciencia

 

Publicado en Anatomía Aplicada, Artículos científicos, Ciencia, Nutrición, Nutrición, Nutrición, Nutrición, alimentación y salud, Recursos, Tutoría, Vídeos
Publicado el 10 jun. 2019

Entra en nuestra web: https://www.bbvaaprendemosjuntos.com/es
Suscríbete a nuestro canal de youtube: https://www.youtube.com/channel/UCI6Q…
Síguenos en Facebook: http://fb.com/aprendemosjuntosBBVA
Síguenos en Twitter: http://twitter.com/aprenderjuntos_
Escucha nuestros podcasts en Spotify: https://open.spotify.com/show/07rXxtO…

Creer que comer de todo es saludable, que el desayuno es la comida más importante del día o que añadiendo vitamina D y C a tu alimentación tendrás más salud son algunos de los mitos más extendidos entre la población. En el siguiente vídeo, el dietista-nutricionista Julio Basulto, afirma que la clave de una alimentación equilibrada no está en comer bien, sino en dejar de comer mal: “Los daños a la salud no se compensan tomándote soja germinada; es mejor que recuerdes que, tanto para tus hijos como para ti, la clave es alejar de tu día a día los productos malsanos, que piensas que son excepción pero que, en realidad, son norma”.

Basulto es editor de la Revista Española de Nutrición Humana y Dietética, también ejerce como docente en diversas instituciones y consultor en varios comités especializados. Además, es colaborador de múltiples medios y autor de numerosas publicaciones científicas y libros como ‘No más dieta’, ‘Mamá come sano’, o ‘Se me hace bola’, entre otros; donde aborda temas como la alimentación vegetariana, la obesidad infantil y la creciente preocupación por comer sano. Julio Basulto desmonta falsas creencias a través de una sólida base científica. Su principal objetivo es que comamos conscientemente. “No se trata de ‘imponer’, sino de incorporar dentro de casa un patrón de dieta sana para que nuestros hijos aprendan con el ejemplo”, concluye.

Publicado en 1º Bachiller, 3º ESO, 3º op, Anatomía Aplicada, Artículos científicos, Cardiorespiratorio, Circulatorio y excretor, Función de nutrición: Anatomía y fisiología del aparato circulatorio, Recursos

Convertir sangre de tipo A en universal

La acción de dos enzimas de la microbiota intestinal transformaría el segundo grupo sanguíneo más común en sangre de tipo 0.

El hallazgo podría aumentar las reservas del grupo sanguíneo 0. [iStock/iLexx]

En su trabajo más reciente, Stephen G. Withers y su equipo, de la Universidad de la Columbia Británica, describen el modo de convertir sangre del grupo A en 0. De confirmarse, el hallazgo, publicado por la revista Nature Microbiology, permitiría aumentar las reservas de este último tipo sanguíneo, considerado «universal».

Una transfusión de sangre requiere de una óptima compatibilidad entre donante y receptor. De lo contrario, ante la mezcla de grupos sanguíneos incompatibles, la respuesta del sistema inmunitario podría ser letal. La presencia de determinados azúcares en la superficie de los glóbulos rojos determina si la sangre es de tipo A o B. En cambio, el grupo 0 se caracteriza por la ausencia de estos antígenos, por lo que su transferencia a sujetos A, B o AB con factor de Rhesus o Rh compatible, no genera reacción alguna.

Así pues, los autores centraron su investigación en eliminar los azúcares superficiales. Para ello, examinaron la microbiota intestinal. Algunas de las poblaciones bacterianas que habitan nuestro intestino son capaces de digerir unos compuestos de la mucosa intestinal, conocidos como mucinas, parecidos a los antígenos A y B.

Los microbios analizados se aislaron de muestras fecales obtenidas de un individuo varón, sano, asiático, de grupo sanguíneo AB. De entre todos ellos, destacó la especie Flavonifractor plautii. Según los resultados, pequeñas cantidades de dos enzimas secretadas por esta bacteria degradaron por completo el azúcar del grupo A, en muestras de sangre humana. Sin embargo, su acción no afectó al antígeno B.

Los científicos destacan que la elevada eficiencia y especificidad de las enzimas reducen de forma notable el coste económico del proceso de conversión. No obstante, se muestran prudentes y señalan el carácter preliminar de los datos. Futuros experimentos corroborarán la total eliminación del azúcar. Asimismo, investigarán cualquier posible alteración adicional inducida por las enzimas bacterianas, que pudiera ocasionar efectos indeseados en los pacientes.

Marta Pulido Salgado

Referencia: «An enzymatic pathway in the human gut microbiome that converts A to universal O type blood», de P. Rahfeld et al., en Nature Microbiology, publicado el 10 de junio de 2019.

Leer en Investigación y ciencia

Publicado en 1º Bachiller, Anatomía Aplicada, El sistema inmunitario y las vacunas, Recursos

Así se propaga la resistencia a los antibióticos en el medioambiente

Los antibióticos están dejando de ser efectivos

Actualmente nos encontramos al borde de una crisis global porque los antibióticos están dejando de ser efectivos, poniendo así en riesgo una gran parte del desarrollo alcanzado por la medicina moderna.

De hecho, más del 70% de las bacterias patógenas que causan infecciones hospitalarias son resistentes a múltiples antibióticos, lo que hace que el tratamiento de tales infecciones sea altamente problemático. Además, se estima que en 2050, 10 millones de vidas humanas estarán en riesgo anualmente debido al aumento de la resistencia a los antibióticos si las soluciones no se encuentran a tiempo.

Los antibióticos son sustancias químicas que causan la muerte de las bacterias o, en su defecto, inhiben su crecimiento. Estas sustancias son producidas de forma natural por bacterias y hongos, principalmente por los que viven en el suelo.

En la naturaleza, los antibióticos cumplen diversos papeles ecológicos. Los microorganismos que los producen los utilizan como armas químicas para competir entre ellos y como moléculas de señalización para comunicarse químicamente y promover la coordinación entre diferentes individuos.

Desde mediados del siglo XX, estos compuestos se emplean, además, en medicina y veterinaria como herramienta terapéutica para el tratamiento de infecciones bacterianas. Junto con las vacunas, son uno de los desarrollos médicos que más ha contribuido a nuestra supervivencia y calidad de vida.

Por desgracia, en las últimas décadas su eficacia ha disminuido como consecuencia de su mala utilización y abuso. Ambas prácticas han provocado una creciente emergencia y diseminación de genes de resistencia a antibióticos o ARG (del inglés, antibiotic resistance genes) y, de forma concomitante, la aparición de bacterias resistentes a dichos antibióticos (las ARB).

Es importante enfatizar que, cuando suministramos un antibiótico para uso médico o veterinario, este solo se metaboliza parcialmente y, en consecuencia, gran parte del antibiótico administrado se excreta a través de la orina y las heces.

Así, los antibióticos y los productos de su degradación acaban en las plantas de depuración de aguas residuales urbanas, para posteriormente ser vertidos al medio ambiente a través del efluente de estas instalaciones. La aplicación de lodos de depuradora y enmiendas orgánicas de origen animal (como el estiércol y los purines) a suelos agrícolas también contribuye a la presencia de antibióticos, ARG y ARB en el entorno.

Una característica transmisible

Los genes de resistencia a antibióticos han permitido la convivencia ancestral entre antibióticos y bacterias, posibilitando que estas puedan sobrevivir en su presencia. Estos fragmentos de ADN se pueden transferir entre bacterias por dos vías bien diferenciadas:

  • Por una parte, mediante la transferencia de material genético desde bacterias parentales a bacterias hijas, en un proceso que se denomina transferencia vertical de genes.
  • Por otra parte, la transferencia horizontal de genes se produce cuando dos bacterias no emparentadas se transfieren material genético. Una de las mayores ventajas evolutivas de la transferencia horizontal es la adquisición rápida y eficaz, por parte de las bacterias receptoras, de genes que les permiten sobrevivir en ambientes hostiles.

La transferencia horizontal de genes entre bacterias puede darse, a su vez, mediante tres mecanismos.

  • En el proceso denominado transformación, las bacterias toman ADN directamente del medio que les rodea, incorporando así nuevos genes.
  • Los bacteriófagos o fagos (virus que infectan bacterias) pueden vehiculizar fragmentos del cromosoma bacteriano, incluyendo ARG, cuando durante la fase lítica pasan de una bacteria a otra. A este fenómeno se le denomina transducción.
  • A través de la conjugación, un plásmido conjugativo —molécula circular de ADN que contiene ARG y los genes que permiten su propagación— es transferido de una bacteria a otra mediante un proceso que requiere contacto directo entre ambas.

En este último caso, la bacteria receptora no sólo adquiere los ARG, sino que recibe todo el plásmido que los alberga. Esto le permite transferir ARG a otras bacterias, contribuyendo activamente a la diseminación de la resistencia a antibióticos entre bacterias.

Un problema de escala global

Los antibióticos liberados en el agua y los suelos ejercen una presión selectiva sobre las bacterias ambientales —las obliga a adquirir ARG para poder sobrevivir—, promoviendo la diseminación de genes de resistencia a antibióticos y con ello la proliferación de bacterias resistentes. Estos microorganismos pueden, a su vez, transmitir los ARG a través de plásmidos conjugativos u otros elementos genéticos móviles a otras bacterias, incluidas bacterias patógenas humanas.

Como consecuencia, cada vez son más frecuentes las infecciones por bacterias resistentes a antibióticos o peor, por bacterias multirresistentes (bacterias patógenas que han adquirido varios genes de resistencia).

Así se propaga la resistencia a los antibióticos en el medioambiente
Itziar Alkorta, Author provided (No reuse)

Desde la Universidad del País Vasco, junto con otros dos centros de investigación de la Comunidad Autónoma Vasca (Neiker y BC3 Basque Centre for Climate Change) hemos lanzado la iniciativa Joint Research Lab on Environmental Antibiotic Resistance para estudiar, monitorizar y desarrollar estrategias de actuación frente a este creciente problema.

Alcanzar una solución requiere de un enfoque multidisciplinar, que involucre, entre otros, a profesionales clínicos y del sector agroganadero, así como a expertos en evolución y medioambiente.

Muy probablemente, será necesaria la combinación de diferentes estrategias terapéuticas como la racionalización del uso de los antibióticos, la búsqueda de nuevos antibióticos y otras moléculas con capacidad antimicrobiana, el empleo de virus como alternativa a los antibióticos, el desarrollo de inhibidores de la conjugación y el trasplante de comunidades bacterianas que puedan competir con los patógenos.

Itziar Alkorta Calvo, Profesora del Departamento de Bioquímica y Biología Molecular del Instituto Biofisika, Universidad del País Vasco / Euskal Herriko Unibertsitatea y Carlos Garbisu, Jefe del Departamento de Conservación de Recursos Naturales

Este artículo fue publicado originalmente en The Conversation. Lea el original.

Leer en la Ser

Publicado en Educación, Neuroendocrino, Recursos, Tutoría

Neurociencia y educación: 12 principios que todo educador debería conocer

Para garantizar aprendizajes verdaderamente significativos, es indispensable entender qué sucede en el cerebro de una persona cuando está aprendiendo. Por ello, aquí te contamos 12 principios que todo educador debe conocer.

En su libro, Neurociencias y educación: Guía práctica para padres y docentes, Marcela Garrido Díaz intenta responder la necesidad que tienen los padres y los educadores de entender cómo funciona el cerebro. En cuatro capítulos, la autora habla de los componentes del cerebro, de los procesos de maduración, del desarrollo armónico del cerebro y de algunos factores que inciden en dicho desarrollo. Además, Garrido expone ejemplos para relevar la neurociencia como un elemento indispensable de la educación y explica, en términos simple, qué es el aprendizaje y cómo ocurre éste.

Lo primero que explica la autora es que el aprendizaje es un procesos en el cual se adquieren y se modifican algunos conocimientos, valores, conductas, destrezas, habilidades y comportamientos, como resultado de una instrucción formal o informal, del estudio, la experiencia, el razonamiento y la formación. Aunque no se sabe mucho de la neurofisiología del aprendizaje, menciona Garrido, sí existen algunos datos claves que permiten entender cómo y cuándo sucede. Por ejemplo, se sabe que el cerebro está disponible para el aprendizaje en las primeras etapas de vida, momento en el cual, las neuronas se multiplican a gran velocidad. Se sabe que el aprendizaje está relacionado con la modificación de conexiones sinápticas. Sobre esto hay otros principios acerca del aprendizaje del cerebro que la autora explica en 12 puntos esenciales:

1. El cerebro es un complejo sistema adaptativo

Una de las características más poderosas del cerebro es la capacidad que tiene de adaptarse y funcionar en muchos niveles y de forma simultánea. De forma continua e interactiva, en el cerebro operan cosas como pensamientos, emociones, imaginación, predisposiciones y fisiología.

2. El cerebro es social

En los primeros años de vida, el cerebro está en su estado más flexible y receptivo. Éste se configura a medida que interactuamos con el entorno y las personas. Esto quiere decir que el aprendizaje que ocurre en el cerebro está profundamente influido por la naturaleza de las relaciones sociales.

3. La búsqueda de significado es innata

Buscar significado es encontrar sentido a nuestras experiencias. Esta búsqueda se orienta en la supervivencia y es algo básico para el cerebro. Además está dirigida por nuestras metas y valores, y se ordena desde la necesidad de alimentarnos y encontrar seguridad, hasta la exploración de nuestro potencial.

4. La búsqueda de significado ocurre a través de “pautas”

Las pautas son mapas esquemáticos y también categorías innatas y adquiridas. El cerebro necesita y registra automáticamente lo familiar, y al mismo tiempo, busca y responde a nuevos estímulos. Éste intenta discernir y entender pautas a medida que ocurren y le da forma a nuevas pautas que son únicas y propias. Además, se resiste a que le impongan cosas sin significado, es decir, cosas aisladas que no importan para quien está aprendiendo. Esto quiere decir que, en una educación efectiva, se debe dar la oportunidad a los alumnos de que sus cerebros formulen sus propias pautas de entendimiento.

5. Las emociones son críticas para la elaboración de pautas

Lo que aprendemos es influido y organizado por las emociones y otros elemento mentales que implican expectativas, prejuicios, autoestima e interacción social. Estas emociones se moldean unos a otros y no se separan y por esto, un clima emocional apropiado, es fundamental para el aprendizaje.

6. El cerebro percibe simultáneamente

En una persona sana, los dos hemisferios cerebral interactúan en cada actividad. Garrido explica que es importante reconocer esto para introducir proyectos o ideas que sean “globales” desde el comienzo. Es decir que permitan que ambos hemisferios sigan interactuando.

7. El aprendizaje implica dos tipos de atención

Las dos atenciones son: la localizada y la periférica. Esto quiere decir que el cerebro absorbe información de lo que es consciente y de lo que está más allá de su foco de atención inmediato. Es, por lo tanto, fundamental que se preste atención a todos los factores de un entorno educativo.

8. El aprendizaje implica procesos conscientes e inconscientes

Gran parte del aprendizaje ocurre de una manera inconsciente. Esto significa que la comprensión de muchas cosas puede darse horas, semanas o meses más tarde después de una clase. Es clave entonces, que los educadores faciliten ese procesamiento inconsciente que llega después, convirtiéndolo en algo visible.

9. Tenemos al menos, dos formas de organizar la memoria

La primera forma es un conjunto de sistemas que permiten recordar información relativamente no relacionada –motivada por un premio y un castigo–, y la segunda es una memoria espacial/autobiográfica que no necesita ensayo y error y permite el recuerdo de experiencias. El aprendizaje significativo ocurre a través de la combinación de ambos enfoques de memoria.

10. El aprendizaje es un proceso de desarrollo

El cerebro es “plástico”, esto quiere decir que es moldeado por la experiencia de la persona. Hay secuencias de desarrollo predeterminadas en un niño, incluida la ventana de oportunidades que asientan la estructura básica necesaria para el aprendizaje posterior. Al ser un proceso, el ser humano siempre es capaz de aprender más pues las neuronas continúan haciendo y reforzando conexiones neuronales a lo largo de toda la vida.

11. El aprendizaje complejo se incrementa por el desafío y se inhibe por la amenaza

El cerebro aprende de manera óptima cuando es desafiado en un entorno que estimula el asumir riesgos. Sin embargo, ante una amenaza, se limita, se hace menos flexible. Por eso se debe crear un ambiente relajado con bajas amenazas y altos desafíos.

12. Cada cerebro está organizado de manera única

Todos tenemos el mismo sistema cerebral, sin embargo todos tenemos diferencias que son consecuencia de una herencia genética o muchas veces del entorno. Esas diferencias se expresan en términos de estilos de aprendizaje, talentos e inteligencias.

Estos 12 puntos evidencian que la mente humana no sólo es un músculo, sino un órgano que registra y aprovecha todo lo que experimenta y descubre. Teniendo en cuenta esto, padres y educadores pueden aprovechar dicha información para impulsar experiencias de aprendizaje significativo que tienen un gran impacto a nivel cerebral con el fin de potenciar el aprendizaje de todos y cada uno de ellos.

Publicado en 3º ESO, 3º op, Anatomía Aplicada, Artículos científicos, Ciencia, Recursos, Salud y inmunidad

Los espermatozoides van con guardaespaldas

Un trabajo retrata a las células encargadas de que el sistema inmune no aniquile a los garantes de la descendencia

Los espermatozoides ‘luchan’ por fecundar los óvulos. GETTY GETTY-Quality

Los espermatozoides son tan importantes que tienen su propio servicio de seguridad. Un reciente estudio lo ha demostrado al describir en detalle los dos tipos de células del sistema inmune encargadas de proteger a las células reproductoras masculinas. El trabajo, realizado por investigadores del Centro Nacional de Investigación Científica de Francia (CNRS) se ha centrado en el estudio de los macrófagos de los testículos. Se trata de células del sistema inmune que, sorprendentemente, se encargan de luchar contra el sistema inmune.

El trabajo, publicado en Journal of Experimental Medicine, surge de una pregunta lógica. Desde el comienzo de la vida, el sistema inmune aprende a diferenciar entre la células del propio organismo y las ajenas, incluidos virus y otros patógenos. Cualquier elemento extraño es localizado y destruido. Las células reproductoras comienzan a producirse mucho después del nacimiento, cuando el individuo ha alcanzado la madurez sexual. Entonces, ¿por qué no las destruye el sistema inmune?

El nuevo estudio, liderado por Michael Sieweke, del Centro de Inmunología de Marsella-Luminy, describe las propiedades de dos tipos de macrófagos en ratones que pueden dar una respuesta a esa pregunta. Su equipo usó un sistema para marcar a estas células del sistema inmune y seguir su camino desde la médula ósea, donde son producidas, a su destino final. Los resultados muestran que estas células protegen a los espermatozoides produciendo moléculas que impiden que otras células del sistema inmune entren en los testículos y las aniquilen, según explica el CNRS en una nota de prensa.

El sistema inmune aprende a diferenciar entre la células del propio organismo y las ajenas. Cualquier elemento extraño es localizado y destruido. Entonces, ¿por qué no destruye el sistema inmune a los espermatozoides?

El trabajo detalla que hay dos tipos de macrófagos, unas células que no solo acuden al lugar de una infección y destruyen a los patógenos, sino que también regulan la actividad de otras células del sistema inmune. Hay un tipo que se origina durante el desarrollo embrionario, y otro que se produce a lo largo de toda la vida en la médula ósea.

Ambas clases están presentes en los testículos. Hay un tipo que se encuentra en las partes encargadas de producir testosterona y que son de origen embrionario, es decir, están ahí desde el nacimiento. El segundo tipo de macrófagos se localiza en los túbulos seminíferos, donde están las células madre que, al madurar, se convierten en espermatozoides.

Los investigadores han diseñado moléculas especiales que se unen específicamente a uno de los dos tipos de macrófagos. Esto les ha permitido seguir al segundo tipo de células desde la médula ósea hasta los testículos. Han descubierto que el cuerpo solo comienza a producir estas células llegado a la pubertad, por ejemplo, en ratones comienza a las dos semanas del nacimiento. Una vez que el cuerpo empieza a producirlos, los macrófagos se quedan en los testículos siguiendo a los espermatozoides y protegiéndolos del resto del sistema inmune, que podría aniquilarlos. Los investigadores quieren aclarar mejor la relación entre estas células protectoras, los espermatozoides y la testosterona, pues podría ayudar a diseñar estrategias contra la infertilidad.

Leer en El País
Publicado en 3º ESO, 3º op, Anatomía Aplicada, Artículos científicos, Ciencia, Recursos, Salud y inmunidad

“Cambiando los hábitos ya se podrían reducir el 40% de los tumores”

El director del Vall d’Hebron Instituto de Oncología sostiene que la medicina de precisión es una de las líneas estratégicas para combatir el cáncer

Dia Mundial contra el cancer
El doctor Tabernero en uno de los laboratorios del VHIO VHIO

El 2015 se cerró con 248.000 nuevos diagnósticos de cáncer en España. Muchos, de hecho, más de los previstos para 2020, pero “dentro de la expectativa”, tranquiliza el doctor Josep Tabernero, director del Vall d’Hebron Instituto de Oncología (VHIO). Desde una de las grandes trincheras de la investigación contra el cáncer como es el VHIO, Tabernero se ha hecho un nombre entre la comunidad científica internacional con sus hallazgos. De su mano ha llegado una tecnología que, mediante una biopsia líquida (un análisis de sangre), puede detectar marcadores tumorales en la sangre.

Tabernero, que en 2018 asumirá la presidencia de la Sociedad Europea de Oncología Clínica (ESMO, en sus siglas en inglés), atiende a EL PAÍS por teléfono, desde un tren a medio camino entre Heidelberg y Frankfurt. En vísperas del día mundial contra la enfermedad, su agenda no da tregua. El cáncer tampoco. El médico, que también es jefe del servicio de oncología médica del hospital Vall d’Hebron, avanza algunas de las investigaciones que ultima el VHIO: “Tendremos avances en inmunoterapia y biopsia líquida y nuevas subclasificaciones de tumores”.

Pregunta. Los casos de cáncer han crecido un 15% en cinco años y ya se superan los diagnósticos previstos para 2020. ¿Qué sucede?

“El objetivo es cronificar el cáncer y mucho más. Intentamos prevenirlo, que no aparezca, diagnosticarlo precozmente y curarlo. Y donde no podamos curarlo, volverlo crónico

Respuesta. El diagnóstico de casos de cáncer ha aumentado como se esperaba y un poco más, pero porque envejece la población, no porque haya más causas de las esperadas que generen cáncer. Los casos aumentan conforme a las expectativas, lo que pasa es que en estos años no se han corregido variables como la migración.

Y también influye la detección precoz. El tumor más frecuente es el colorrectal y se ha puesto en marcha el programa de cribado de sangre en heces, y esto hace que se diagnostiquen ahora los tumores que presentan [sintomatología] clínica y también los que no lo hacen, los que se diagnosticarían en dos o tres años.

P. La medicina personalizada o de precisión se ha convertido en un término recurrente en oncología. ¿La quimioterapia tiene los días contados?

La medicina de precisión es el futuro. Los tratamientos dirigidos han sustituido a la quimio en algunos tumores, como la leucemia mieloide crónica. También se está estudiando mucho la inmunoterapia, especialmente para ver por qué hay células del sistema inmunitario que no ven anormales las células cancerígenas y no actúan contra ellas. Pero la quimioterapia seguirá teniendo su papel porque en otros tumores será muy difícil conseguir terapias dirigidas y se seguirá utilizando la quimio.

P. ¿La estrategia a explotar pasa por disparar a los genes en vez de a los órganos, como hasta ahora?

Cambiar las costumbres

Tabernero insiste en que un cambio en los hábitos de vida puede suponer una reducción en la incidencia de los tumores. “Con 10 maniobras podemos conseguir dejar fuera el 40% de los tumores y siete de ellas son a coste 0”, alienta el oncólogo.

“Eliminar el tabaco, limitar el consumo de alcohol, combatir la obesidad, tener una dieta pobre en grasas y carne roja y rica en fibra, hacer ejercicio y protegernos de la exposición al sol. Con estos siete cambios en nuestros hábitos podemos reducir la incidencia del cáncer”, apunta el médico. Evitar la contaminación, impulsar los programas de vacunación y los de cribado son las otras tres propuestas que completan el decálogo y, aunque requieren de decisiones políticas e inversión económica, son también factibles, dice Tabernero.

R. Sí. Disparas al órgano a través de la cirugía y las distintas modalidades de radioterapia, pero los tratamientos médicos disparan hacia las alteraciones moleculares, a las células cancerígenas, independientemente de dónde estén.

P. El doctor Josep Baselga [el oncólogo catalán que dirige el Memorial Sloan Kettering Cancer Center de Nueva York] dijo hace unos meses que en 20 años el cáncer ya no será una causa principal de muerte. ¿Es una afirmación realista u optimista?

R. Es así, por los avances diagnósticos. El cáncer no se curará, pero dejará de ser la primera causa de muerte. Solo cambiando los hábitos [dieta sana, no fumar, ejercicio físico, etc.] se podrían reducir el 40% de los tumores, por lo que dejaría de ser la primera causa de muerte y volvería a serlo las enfermedades cardiovasculares.

P. ¿El objetivo es cronificar el cáncer?

R. Sí, cronificarlo, pero mucho más. Intentamos prevenirlo, que no aparezca, diagnosticarlo precozmente y curarlo. Y donde no podamos curarlo, volverlo crónico.

P. ¿Hay algún tumor que hayan conseguido cronificar?

R. Sí, la leucemia mieloide crónica. Antes la supervivencia era de dos años y ahora hay pacientes que llevan 20. También algún cáncer de pulmón.

P. Los oncólogos tienden a mirar la supervivencia del cáncer a cinco años vista, pero, ¿qué sucede con los pacientes que pasan ese umbral? ¿En qué condiciones superan los cinco años?

R. Ahora ya damos pronósticos a 10 o a 15 años en algunos casos, pero en la mayoría de las enfermedades, los primeros años son críticos para detectar recidivas.

Hay enfermos que quedan con secuelas físicas, como trastornos gastrointestinales, sequedad de boca, cirugías que resultaron mutilantes, depende del tipo de tumor. Y también hay secuelas psicológicas, como el trastorno psicológico del miedo. Cada vez hay más programas para ayudar al paciente a afrontar esta nueva vida después del cáncer.

Leer en El País